1
1
mirror of https://github.com/github/semantic.git synced 2025-01-05 05:58:34 +03:00

Introduce standard and collecting evaluator type classes

Ported from https://github.com/robrix/abstract-interpretation
This commit is contained in:
Timothy Clem 2017-10-13 10:13:41 -07:00
parent 07ab2d4032
commit 448d9ea338
5 changed files with 265 additions and 0 deletions

View File

@ -15,6 +15,9 @@ library
hs-source-dirs: src
exposed-modules: Algorithm
, Alignment
, Abstract.Eval
, Abstract.Set
, Abstract.Store
, Category
, Data.Align.Generic
, Data.Blob
@ -108,6 +111,7 @@ library
, optparse-applicative
, parallel
, parsers
, pointed
, recursion-schemes
, semigroups
, split

44
src/Abstract/Eval.hs Normal file
View File

@ -0,0 +1,44 @@
{-# LANGUAGE TypeApplications, AllowAmbiguousTypes, DefaultSignatures, MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, UndecidableInstances, ScopedTypeVariables #-}
module Abstract.Eval where
import Data.Term
import Abstract.Store
import Data.Proxy
import Data.Union
-- Standard evaluator/interpreter
class Monad m => Eval v m syntax constr where
evaluate :: (Term syntax ann -> m v) -> constr (Term syntax ann) -> m v
instance ( Monad m
, Apply (Eval v m s) fs
)
=> Eval v m s (Union fs) where
evaluate ev = apply (Proxy :: Proxy (Eval v m s)) (evaluate ev)
class Monad m => MonadGC l a m where
askRoots :: m (Set (Address l a))
extraRoots :: Set (Address l a) -> m b -> m b
-- Collecting evaluator
class Monad m => EvalCollect l v m syntax constr where
evalCollect :: (Term syntax ann -> m v)
-> constr (Term syntax ann)
-> m v
default evalCollect :: (Eval v m syntax constr) => (Term syntax ann -> m v)
-> constr (Term syntax ann)
-> m v
evalCollect = evaluate
instance ( Monad m
, Apply (EvalCollect l v m s) fs
)
=> EvalCollect l v m s (Union fs) where
evalCollect ev = apply (Proxy :: Proxy (EvalCollect l v m s)) (evalCollect @l ev)

27
src/Abstract/Set.hs Normal file
View File

@ -0,0 +1,27 @@
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Abstract.Set where
import Data.Bifunctor (second)
import Data.Function (on)
import Data.Functor.Classes
import Data.Pointed
import Data.Semigroup
import qualified Data.Set as Set
newtype Set a = Set { unSet :: Set.Set a }
deriving (Eq, Eq1, Foldable, Monoid, Ord, Ord1, Pointed, Semigroup, Show, Show1)
member :: Ord a => a -> Set a -> Bool
member = (. unSet) . Set.member
insert :: Ord a => a -> Set a -> Set a
insert a = Set . Set.insert a . unSet
delete :: Ord a => a -> Set a -> Set a
delete a = Set . Set.delete a . unSet
split :: Ord a => Set a -> Maybe (a, Set a)
split = fmap (second Set) . Set.minView . unSet
difference :: Ord a => Set a -> Set a -> Set a
difference = (Set .) . (Set.difference `on` unSet)

188
src/Abstract/Store.hs Normal file
View File

@ -0,0 +1,188 @@
{-# LANGUAGE AllowAmbiguousTypes, DataKinds, FlexibleContexts, FlexibleInstances, GeneralizedNewtypeDeriving, MultiParamTypeClasses, ScopedTypeVariables, TypeFamilies, TypeOperators, UndecidableInstances #-}
module Abstract.Store
( Precise(..)
, Monovariant(..)
, MonadAddress(alloc, Cell)
, Store(..)
, storeLookup
, storeLookupAll
, storeRestrict
, Address(..)
, Set(..)
, deref
, assign
, MonadStore(..)
, modifyStore
) where
import Abstract.Set
import Data.Term
import Control.Applicative
import Control.Monad ((<=<))
import Control.Monad.Effect
import Control.Monad.Effect.State
import Control.Monad.Fail
import Data.Foldable (asum, toList)
import Data.Functor.Classes
import qualified Data.Map as Map
import Data.Pointed
import Data.Semigroup
import Prelude hiding (fail)
newtype Store l a = Store { unStore :: Map.Map (Address l a) (Cell l a) }
deriving (Semigroup, Monoid)
newtype Address l a = Address { unAddress :: l }
deriving (Eq, Ord, Show)
storeLookup :: Ord l => Address l a -> Store l a -> Maybe (Cell l a)
storeLookup = (. unStore) . Map.lookup
storeLookupAll :: (Ord l, Foldable (Cell l)) => Address l a -> Store l a -> Maybe [a]
storeLookupAll address = fmap toList . storeLookup address
storeInsert :: (Ord l, Semigroup (Cell l a), Pointed (Cell l)) => Address l a -> a -> Store l a -> Store l a
storeInsert = (((Store .) . (. unStore)) .) . (. point) . Map.insertWith (<>)
storeSize :: Store l a -> Int
storeSize = Map.size . unStore
storeRestrict :: Ord l => Store l a -> Set (Address l a) -> Store l a
storeRestrict (Store m) roots = Store (Map.filterWithKey (\ address _ -> address `member` roots) m)
assign :: (Ord l, Semigroup (Cell l a), Pointed (Cell l), MonadStore l a m) => Address l a -> a -> m ()
assign = (modifyStore .) . storeInsert
class Monad m => MonadStore l a m where
getStore :: m (Store l a)
putStore :: Store l a -> m ()
instance (State (Store l a) :< fs) => MonadStore l a (Eff fs) where
getStore = get
putStore = put
modifyStore :: MonadStore l a m => (Store l a -> Store l a) -> m ()
modifyStore f = getStore >>= putStore . f
class (Ord l, Pointed (Cell l), Monad m) => MonadAddress l m where
type Cell l :: * -> *
deref :: (MonadStore l a m, MonadFail m) => Address l a -> m a
alloc :: MonadStore l a m => Name -> m (Address l a)
newtype Precise = Precise { unPrecise :: Int }
deriving (Eq, Ord, Show)
allocPrecise :: Store Precise a -> Address Precise a
allocPrecise = Address . Precise . storeSize
newtype I a = I { unI :: a }
deriving (Eq, Ord, Show)
instance Monad m => MonadAddress Precise m where
type Cell Precise = I
deref = maybe uninitializedAddress (pure . unI) <=< flip fmap getStore . storeLookup
alloc _ = fmap allocPrecise getStore
newtype Monovariant = Monovariant { unMonovariant :: Name }
deriving (Eq, Ord, Show)
instance (Alternative m, Monad m) => MonadAddress Monovariant m where
type Cell Monovariant = Set
deref = asum . maybe [] (map pure . toList) <=< flip fmap getStore . storeLookup
alloc = pure . Address . Monovariant
uninitializedAddress :: MonadFail m => m a
uninitializedAddress = fail "uninitialized address"
instance Semigroup (I a) where
(<>) = const
instance Foldable I where
foldMap f = f . unI
instance Functor I where
fmap f = I . f . unI
instance Traversable I where
traverse f = fmap I . f . unI
instance Pointed I where
point = I
instance Eq1 I where
liftEq eq (I a) (I b) = eq a b
instance Ord1 I where
liftCompare comp (I a) (I b) = comp a b
instance Show1 I where
liftShowsPrec sp _ d (I a) = sp d a
instance Foldable (Address l) where
foldMap _ = mempty
instance Functor (Address l) where
fmap _ = Address . unAddress
instance Traversable (Address l) where
traverse _ = fmap Address . pure . unAddress
instance Foldable (Cell l) => Foldable (Store l) where
foldMap = (. unStore) . foldMap . foldMap
instance (Ord l, Functor (Cell l)) => Functor (Store l) where
fmap f = Store . Map.mapKeys (Address . unAddress) . fmap (fmap f) . unStore
instance (Ord l, Traversable (Cell l)) => Traversable (Store l) where
traverse f = fmap (Store . Map.mapKeys (Address . unAddress)) . traverse (traverse f) . unStore
instance (Eq l, Eq1 (Cell l)) => Eq1 (Store l) where
liftEq eq (Store m1) (Store m2) = liftEq2 (liftEq eq) (liftEq eq) m1 m2
instance (Eq a, Eq l, Eq1 (Cell l)) => Eq (Store l a) where
(==) = eq1
instance Eq2 Address where
liftEq2 eqL _ (Address a) (Address b) = eqL a b
instance Eq l => Eq1 (Address l) where
liftEq = liftEq2 (==)
instance (Ord l, Ord1 (Cell l)) => Ord1 (Store l) where
liftCompare compareA (Store m1) (Store m2) = liftCompare2 (liftCompare compareA) (liftCompare compareA) m1 m2
instance (Ord a, Ord l, Ord1 (Cell l)) => Ord (Store l a) where
compare = compare1
instance Ord2 Address where
liftCompare2 compareL _ (Address a) (Address b) = compareL a b
instance Ord l => Ord1 (Address l) where
liftCompare = liftCompare2 compare
instance (Show l, Show1 (Cell l)) => Show1 (Store l) where
liftShowsPrec sp sl d (Store m) = showsUnaryWith (liftShowsPrec (liftShowsPrec sp sl) (liftShowList sp sl)) "Store" d m
instance (Show a, Show l, Show1 (Cell l)) => Show (Store l a) where
showsPrec = showsPrec1
instance Show2 Address where
liftShowsPrec2 spL _ _ _ d = showsUnaryWith spL "Address" d . unAddress
instance Show l => Show1 (Address l) where
liftShowsPrec = liftShowsPrec2 showsPrec showList

View File

@ -3,6 +3,7 @@ module Data.Term
( Term(..)
, termIn
, TermF(..)
, Name
, termSize
, extract
, unwrap
@ -30,6 +31,7 @@ newtype Term syntax ann = Term { unTerm :: TermF syntax ann (Term syntax ann) }
data TermF syntax ann recur = In { termAnnotation :: ann, termOut :: syntax recur }
deriving (Eq, Foldable, Functor, Show, Traversable)
type Name = String
-- | Return the node count of a term.
termSize :: (Foldable f, Functor f) => Term f annotation -> Int