mirror of
https://github.com/github/semantic.git
synced 2024-12-01 00:33:59 +03:00
Merge remote-tracking branch 'origin/master' into symbol-eval
This commit is contained in:
commit
78212c6efb
@ -48,6 +48,7 @@ library
|
||||
, Data.Abstract.FreeVariables
|
||||
, Data.Abstract.Live
|
||||
, Data.Abstract.ModuleTable
|
||||
, Data.Abstract.Number
|
||||
, Data.Abstract.Store
|
||||
, Data.Abstract.Type
|
||||
, Data.Abstract.Value
|
||||
|
@ -5,9 +5,11 @@ import Control.Abstract.Addressable
|
||||
import Control.Abstract.Analysis
|
||||
import Data.Abstract.Environment
|
||||
import Data.Abstract.FreeVariables
|
||||
import Data.Abstract.Number as Number
|
||||
import Data.Abstract.Type as Type
|
||||
import Data.Abstract.Value as Value
|
||||
import Data.Scientific (Scientific, fromFloatDigits, toRealFloat)
|
||||
import qualified Data.Map as Map
|
||||
import Data.Scientific (Scientific)
|
||||
import Prelude hiding (fail)
|
||||
import Prologue
|
||||
|
||||
@ -40,8 +42,7 @@ class (MonadAnalysis term value m, Show value) => MonadValue term value m where
|
||||
-- You usually pass the same operator as both arguments, except in the cases where
|
||||
-- Haskell provides different functions for integral and fractional operations, such
|
||||
-- as division, exponentiation, and modulus.
|
||||
liftNumeric2 :: (forall a . (Real a, Floating a) => a -> a -> a)
|
||||
-> (forall b . Integral b => b -> b -> b)
|
||||
liftNumeric2 :: (forall a b. Number a -> Number b -> SomeNumber)
|
||||
-> (value -> value -> m value)
|
||||
|
||||
-- | Lift a Comparator (usually wrapping a function like == or <=) to a function on values.
|
||||
@ -60,6 +61,9 @@ class (MonadAnalysis term value m, Show value) => MonadValue term value m where
|
||||
-- | Construct a floating-point value.
|
||||
float :: Scientific -> m value
|
||||
|
||||
-- | Construct a rational value.
|
||||
rational :: Prelude.Rational -> m value
|
||||
|
||||
-- | Construct an N-ary tuple of multiple (possibly-disjoint) values
|
||||
multiple :: [value] -> m value
|
||||
|
||||
@ -112,47 +116,53 @@ instance ( MonadAddressable location (Value location term) m
|
||||
)
|
||||
=> MonadValue term (Value location term) m where
|
||||
|
||||
unit = pure . injValue $ Value.Unit
|
||||
integer = pure . injValue . Integer
|
||||
boolean = pure . injValue . Boolean
|
||||
string = pure . injValue . Value.String
|
||||
float = pure . injValue . Value.Float
|
||||
symbol = pure . injValue . Value.Symbol
|
||||
multiple vals =
|
||||
pure . injValue $ Value.Tuple vals
|
||||
unit = pure . injValue $ Value.Unit
|
||||
integer = pure . injValue . Value.Integer . Number.Integer
|
||||
boolean = pure . injValue . Boolean
|
||||
string = pure . injValue . Value.String
|
||||
float = pure . injValue . Value.Float . Decimal
|
||||
symbol = pure . injValue . Value.Symbol
|
||||
rational = pure . injValue . Value.Rational . Ratio
|
||||
|
||||
multiple = pure . injValue . Value.Tuple
|
||||
|
||||
ifthenelse cond if' else'
|
||||
| Just (Boolean b) <- prjValue cond = if b then if' else else'
|
||||
| otherwise = fail ("not defined for non-boolean conditions: " <> show cond)
|
||||
|
||||
liftNumeric f arg
|
||||
| Just (Integer i) <- prjValue arg = pure . injValue . Integer $ f i
|
||||
| Just (Value.Float i) <- prjValue arg = pure . injValue . Value.Float $ f i
|
||||
| Just (Value.Integer (Number.Integer i)) <- prjValue arg = integer $ f i
|
||||
| Just (Value.Float (Decimal d)) <- prjValue arg = float $ f d
|
||||
| Just (Value.Rational (Ratio r)) <- prjValue arg = rational $ f r
|
||||
| otherwise = fail ("Invalid operand to liftNumeric: " <> show arg)
|
||||
|
||||
liftNumeric2 f g left right
|
||||
| Just (Integer i, Integer j) <- prjPair pair = pure . injValue . Integer $ g i j
|
||||
| Just (Integer i, Value.Float j) <- prjPair pair = pure . injValue . float $ f (fromIntegral i) (munge j)
|
||||
| Just (Value.Float i, Value.Float j) <- prjPair pair = pure . injValue . float $ f (munge i) (munge j)
|
||||
| Just (Value.Float i, Integer j) <- prjPair pair = pure . injValue . float $ f (munge i) (fromIntegral j)
|
||||
liftNumeric2 f left right
|
||||
| Just (Value.Integer i, Value.Integer j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Integer i, Value.Rational j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Integer i, Value.Float j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Rational i, Value.Integer j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Rational i, Value.Rational j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Rational i, Value.Float j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Float i, Value.Integer j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Float i, Value.Rational j) <- prjPair pair = f i j & specialize
|
||||
| Just (Value.Float i, Value.Float j) <- prjPair pair = f i j & specialize
|
||||
| otherwise = fail ("Invalid operands to liftNumeric2: " <> show pair)
|
||||
where
|
||||
-- Yucky hack to work around the lack of a Floating instance for Scientific.
|
||||
-- This may possibly lose precision, but there's little we can do about that.
|
||||
munge :: Scientific -> Double
|
||||
munge = toRealFloat
|
||||
float :: Double -> Value.Float a
|
||||
float = Value.Float . fromFloatDigits
|
||||
-- Dispatch whatever's contained inside a 'SomeNumber' to its appropriate 'MonadValue' ctor
|
||||
specialize :: MonadValue term value m => SomeNumber -> m value
|
||||
specialize (SomeNumber (Number.Integer i)) = integer i
|
||||
specialize (SomeNumber (Ratio r)) = rational r
|
||||
specialize (SomeNumber (Decimal d)) = float d
|
||||
pair = (left, right)
|
||||
|
||||
liftComparison comparator left right
|
||||
| Just (Integer i, Integer j) <- prjPair pair = go i j
|
||||
| Just (Integer i, Value.Float j) <- prjPair pair = go (fromIntegral i) j
|
||||
| Just (Value.Float i, Integer j) <- prjPair pair = go i (fromIntegral j)
|
||||
| Just (Value.Float i, Value.Float j) <- prjPair pair = go i j
|
||||
| Just (Value.String i, Value.String j) <- prjPair pair = go i j
|
||||
| Just (Boolean i, Boolean j) <- prjPair pair = go i j
|
||||
| Just (Value.Unit, Value.Unit) <- prjPair pair = boolean True
|
||||
| Just (Value.Integer (Number.Integer i), Value.Integer (Number.Integer j)) <- prjPair pair = go i j
|
||||
| Just (Value.Integer (Number.Integer i), Value.Float (Decimal j)) <- prjPair pair = go (fromIntegral i) j
|
||||
| Just (Value.Float (Decimal i), Value.Integer (Number.Integer j)) <- prjPair pair = go i (fromIntegral j)
|
||||
| Just (Value.Float (Decimal i), Value.Float (Decimal j)) <- prjPair pair = go i j
|
||||
| Just (Value.String i, Value.String j) <- prjPair pair = go i j
|
||||
| Just (Boolean i, Boolean j) <- prjPair pair = go i j
|
||||
| Just (Value.Unit, Value.Unit) <- prjPair pair = boolean True
|
||||
| otherwise = fail ("Type error: invalid arguments to liftComparison: " <> show pair)
|
||||
where
|
||||
-- Explicit type signature is necessary here because we're passing all sorts of things
|
||||
@ -191,13 +201,14 @@ instance (Alternative m, MonadAnalysis term Type m, MonadFresh m) => MonadValue
|
||||
ret <- localEnv (mappend env) body
|
||||
pure (Product tvars :-> ret)
|
||||
|
||||
unit = pure Type.Unit
|
||||
integer _ = pure Int
|
||||
boolean _ = pure Bool
|
||||
string _ = pure Type.String
|
||||
float _ = pure Type.Float
|
||||
symbol _ = pure Type.Symbol
|
||||
multiple = pure . Type.Product
|
||||
unit = pure Type.Unit
|
||||
integer _ = pure Int
|
||||
boolean _ = pure Bool
|
||||
string _ = pure Type.String
|
||||
float _ = pure Type.Float
|
||||
symbol _ = pure Type.Symbol
|
||||
rational _ = pure Type.Rational
|
||||
multiple = pure . Type.Product
|
||||
|
||||
ifthenelse cond if' else' = unify cond Bool *> (if' <|> else')
|
||||
|
||||
@ -205,7 +216,7 @@ instance (Alternative m, MonadAnalysis term Type m, MonadFresh m) => MonadValue
|
||||
liftNumeric _ Int = pure Int
|
||||
liftNumeric _ _ = fail "Invalid type in unary numeric operation"
|
||||
|
||||
liftNumeric2 _ _ left right = case (left, right) of
|
||||
liftNumeric2 _ left right = case (left, right) of
|
||||
(Type.Float, Int) -> pure Type.Float
|
||||
(Int, Type.Float) -> pure Type.Float
|
||||
_ -> unify left right
|
||||
|
98
src/Data/Abstract/Number.hs
Normal file
98
src/Data/Abstract/Number.hs
Normal file
@ -0,0 +1,98 @@
|
||||
{-# LANGUAGE GADTs, StandaloneDeriving, Rank2Types #-}
|
||||
|
||||
module Data.Abstract.Number
|
||||
( Number (..)
|
||||
, SomeNumber (..)
|
||||
, liftReal
|
||||
, liftIntegralFrac
|
||||
, liftedExponent
|
||||
) where
|
||||
|
||||
import Data.Scientific
|
||||
import qualified Prelude
|
||||
import Prelude hiding (Integer)
|
||||
import Prologue
|
||||
|
||||
-- | A generalized number type that unifies all interpretable numeric types.
|
||||
-- This is a GADT, so you can specialize the 'a' parameter and be confident
|
||||
-- that, say, a @Number Scientific@ contains a 'Scientific' and not an integer
|
||||
-- in disguise. This unified type is used to provide mathematical operations
|
||||
-- that can change their representation based on an operation's operands—e.g.
|
||||
-- raising a rational number to a ratio may not produce another rational number.
|
||||
-- This also neatly encapsulates the "coalescing" behavior of adding numbers
|
||||
-- of different type in dynamic languages: operating on a whole and a rational
|
||||
-- produces a rational, operating on a rational and a decimal produces a decimal,
|
||||
-- and so on and so forth. When we add complex numbers, they will in turn subsume
|
||||
-- the other numeric types.
|
||||
data Number a where
|
||||
Integer :: !Prelude.Integer -> Number Prelude.Integer
|
||||
Ratio :: !Prelude.Rational -> Number Prelude.Rational
|
||||
Decimal :: !Scientific -> Number Scientific
|
||||
|
||||
deriving instance Eq a => Eq (Number a)
|
||||
|
||||
instance Show (Number a) where
|
||||
show (Integer i) = show i
|
||||
show (Ratio r) = show r
|
||||
show (Decimal d) = show d
|
||||
|
||||
-- | Every 'Number' can be coerced to a 'Scientific'. Used in the 'Ord' instance.
|
||||
toScientific :: Number a -> Scientific
|
||||
toScientific (Integer i) = fromInteger i
|
||||
toScientific (Ratio r) = fromRational r
|
||||
toScientific (Decimal s) = s
|
||||
|
||||
instance Eq a => Ord (Number a) where compare = compare `on` toScientific
|
||||
|
||||
-- | A box that hides the @a@ parameter to a given 'Number'. Pattern-match
|
||||
-- on it to extract the information contained; because there are only three
|
||||
-- possible constructors, pattern-matching all three cases is possible.
|
||||
data SomeNumber = forall a . SomeNumber (Number a)
|
||||
|
||||
-- | Smart constructors for 'SomeNumber'.
|
||||
whole :: Prelude.Integer -> SomeNumber
|
||||
whole = SomeNumber . Integer
|
||||
|
||||
ratio :: Prelude.Rational -> SomeNumber
|
||||
ratio = SomeNumber . Ratio
|
||||
|
||||
decim :: Scientific -> SomeNumber
|
||||
decim = SomeNumber . Decimal
|
||||
|
||||
-- | In order to provide truly generic math operations, where functions like
|
||||
-- exponentiation handle the fact that they are not closed over the rational
|
||||
-- numbers, we must promote standard Haskell math functions from operations
|
||||
-- on 'Real', 'Integral', and 'Fractional' numbers into functions that operate
|
||||
-- on two 'Number' values and return a temporarily-indeterminate 'SomeNumber'
|
||||
-- value. At the callsite, we can then unwrap the 'SomeNumber' and handle the
|
||||
-- specific cases.
|
||||
--
|
||||
-- Promote a function on 'Real' values into one operating on 'Number's.
|
||||
-- You pass things like @+@ and @-@ here.
|
||||
liftReal :: (forall n . Real n => n -> n -> n)
|
||||
-> (Number a -> Number b -> SomeNumber)
|
||||
liftReal f = liftIntegralFrac f f
|
||||
|
||||
-- | Promote two functions, one on 'Integral' and one on 'Fractional' and 'Real' values,
|
||||
-- to operate on 'Numbers'. Examples of this: 'mod' and 'mod'', 'div' and '/'.
|
||||
liftIntegralFrac :: (forall n . Integral n => n -> n -> n)
|
||||
-> (forall f . (Fractional f, Real f) => f -> f -> f)
|
||||
-> (Number a -> Number b -> SomeNumber)
|
||||
liftIntegralFrac f _ (Integer i) (Integer j) = whole (f i j)
|
||||
liftIntegralFrac _ g (Integer i) (Ratio j) = ratio (g (toRational i) j)
|
||||
liftIntegralFrac _ g (Integer i) (Decimal j) = decim (g (fromIntegral i) j)
|
||||
liftIntegralFrac _ g (Ratio i) (Ratio j) = ratio (g i j)
|
||||
liftIntegralFrac _ g (Ratio i) (Integer j) = ratio (g i (fromIntegral j))
|
||||
liftIntegralFrac _ g (Ratio i) (Decimal j) = decim (g (fromRational i) j)
|
||||
liftIntegralFrac _ g (Decimal i) (Integer j) = decim (g i (fromIntegral j))
|
||||
liftIntegralFrac _ g (Decimal i) (Ratio j) = decim (g i (fromRational j))
|
||||
liftIntegralFrac _ g (Decimal i) (Decimal j) = decim (g i j)
|
||||
|
||||
-- | Exponential behavior is too hard to generalize, so here's a manually implemented version.
|
||||
-- TODO: Given a 'Ratio' raised to some 'Integer', we could check to see if it's an integer
|
||||
-- and round it before the exponentiation, giving back a 'Integer'.
|
||||
liftedExponent :: Number a -> Number b -> SomeNumber
|
||||
liftedExponent (Integer i) (Integer j) = whole (i ^ j)
|
||||
liftedExponent (Ratio i) (Integer j) = ratio (i ^^ j)
|
||||
liftedExponent i j = decim (fromFloatDigits ((munge i) ** (munge j)))
|
||||
where munge = (toRealFloat . toScientific) :: Number a -> Double
|
@ -15,6 +15,7 @@ data Type
|
||||
| Symbol -- ^ Type of unique symbols.
|
||||
| Unit -- ^ The unit type.
|
||||
| Float -- ^ Floating-point type.
|
||||
| Rational -- ^ Rational type.
|
||||
| Type :-> Type -- ^ Binary function types.
|
||||
| Var TName -- ^ A type variable.
|
||||
| Product [Type] -- ^ N-ary products.
|
||||
|
@ -6,11 +6,12 @@ import Data.Abstract.Environment
|
||||
import Data.Abstract.Store
|
||||
import Data.Abstract.FreeVariables
|
||||
import Data.Abstract.Live
|
||||
import Data.Abstract.Number
|
||||
import qualified Data.Abstract.Type as Type
|
||||
import qualified Data.Set as Set
|
||||
import Data.Scientific (Scientific)
|
||||
import Prologue
|
||||
import Prelude hiding (Float, Integer, String)
|
||||
import Prelude hiding (Float, Integer, String, Rational, fail)
|
||||
import qualified Prelude
|
||||
|
||||
type ValueConstructors location term
|
||||
@ -20,6 +21,7 @@ type ValueConstructors location term
|
||||
, Float
|
||||
, Integer
|
||||
, String
|
||||
, Rational
|
||||
, Symbol
|
||||
, Tuple
|
||||
]
|
||||
@ -43,7 +45,6 @@ prjPair :: ( f :< ValueConstructors loc term1 , g :< ValueConstructors loc term2
|
||||
-> Maybe (f (Value loc term1), g (Value loc term2))
|
||||
prjPair = bitraverse prjValue prjValue
|
||||
|
||||
|
||||
-- TODO: Parameterize Value by the set of constructors s.t. each language can have a distinct value union.
|
||||
|
||||
-- | A function value consisting of a list of parameters, the body of the function, and an environment of bindings captured by the body.
|
||||
@ -71,13 +72,21 @@ instance Ord1 Boolean where liftCompare = genericLiftCompare
|
||||
instance Show1 Boolean where liftShowsPrec = genericLiftShowsPrec
|
||||
|
||||
-- | Arbitrary-width integral values.
|
||||
newtype Integer value = Integer Prelude.Integer
|
||||
newtype Integer value = Integer (Number Prelude.Integer)
|
||||
deriving (Eq, Generic1, Ord, Show)
|
||||
|
||||
instance Eq1 Integer where liftEq = genericLiftEq
|
||||
instance Ord1 Integer where liftCompare = genericLiftCompare
|
||||
instance Show1 Integer where liftShowsPrec = genericLiftShowsPrec
|
||||
|
||||
-- | Arbitrary-width rational values values.
|
||||
newtype Rational value = Rational (Number Prelude.Rational)
|
||||
deriving (Eq, Generic1, Ord, Show)
|
||||
|
||||
instance Eq1 Rational where liftEq = genericLiftEq
|
||||
instance Ord1 Rational where liftCompare = genericLiftCompare
|
||||
instance Show1 Rational where liftShowsPrec = genericLiftShowsPrec
|
||||
|
||||
-- | String values.
|
||||
newtype String value = String ByteString
|
||||
deriving (Eq, Generic1, Ord, Show)
|
||||
@ -96,7 +105,7 @@ instance Ord1 Symbol where liftCompare = genericLiftCompare
|
||||
instance Show1 Symbol where liftShowsPrec = genericLiftShowsPrec
|
||||
|
||||
-- | Float values.
|
||||
newtype Float value = Float Scientific
|
||||
newtype Float value = Float (Number Scientific)
|
||||
deriving (Eq, Generic1, Ord, Show)
|
||||
|
||||
instance Eq1 Float where liftEq = genericLiftEq
|
||||
|
@ -2,6 +2,7 @@
|
||||
module Data.Syntax.Expression where
|
||||
|
||||
import Data.Abstract.Evaluatable
|
||||
import Data.Abstract.Number (liftIntegralFrac, liftReal, liftedExponent)
|
||||
import Data.Fixed
|
||||
import Diffing.Algorithm
|
||||
import Prelude hiding (fail)
|
||||
@ -61,12 +62,12 @@ instance Show1 Arithmetic where liftShowsPrec = genericLiftShowsPrec
|
||||
-- TODO: Implement Eval instance for Arithmetic
|
||||
instance Evaluatable Arithmetic where
|
||||
eval = traverse subtermValue >=> go where
|
||||
go (Plus a b) = liftNumeric2 (+) (+) a b
|
||||
go (Minus a b) = liftNumeric2 (-) (-) a b
|
||||
go (Times a b) = liftNumeric2 (*) (*) a b
|
||||
go (DividedBy a b) = liftNumeric2 (/) div a b
|
||||
go (Modulo a b) = liftNumeric2 mod' mod a b
|
||||
go (Power a b) = liftNumeric2 (**) (^) a b
|
||||
go (Plus a b) = liftNumeric2 add a b where add = liftReal (+)
|
||||
go (Minus a b) = liftNumeric2 sub a b where sub = liftReal (-)
|
||||
go (Times a b) = liftNumeric2 mul a b where mul = liftReal (*)
|
||||
go (DividedBy a b) = liftNumeric2 div' a b where div' = liftIntegralFrac div (/)
|
||||
go (Modulo a b) = liftNumeric2 mod'' a b where mod'' = liftIntegralFrac mod mod'
|
||||
go (Power a b) = liftNumeric2 liftedExponent a b
|
||||
go (Negate a) = liftNumeric negate a
|
||||
|
||||
-- | Boolean operators.
|
||||
|
@ -105,8 +105,11 @@ instance Eq1 Data.Syntax.Literal.Rational where liftEq = genericLiftEq
|
||||
instance Ord1 Data.Syntax.Literal.Rational where liftCompare = genericLiftCompare
|
||||
instance Show1 Data.Syntax.Literal.Rational where liftShowsPrec = genericLiftShowsPrec
|
||||
|
||||
-- TODO: Implement Eval instance for Rational
|
||||
instance Evaluatable Data.Syntax.Literal.Rational
|
||||
instance Evaluatable Data.Syntax.Literal.Rational where
|
||||
eval (Rational r) = let trimmed = B.takeWhile (/= 'r') r in
|
||||
case readMaybe @Prelude.Integer (unpack trimmed) of
|
||||
Just i -> rational (toRational i)
|
||||
Nothing -> fail ("Bug: invalid rational " <> show r)
|
||||
|
||||
|
||||
-- Complex literals e.g. `3 + 2i`
|
||||
|
Loading…
Reference in New Issue
Block a user