mirror of
https://github.com/github/semantic.git
synced 2024-12-22 14:21:31 +03:00
Compute reverse d-paths in the same manner as forward ones.
This commit is contained in:
parent
781a525f87
commit
f1ad91a346
@ -106,16 +106,16 @@ decompose myers = let ?callStack = popCallStack callStack in case myers of
|
||||
<$> for [negate d, negate d + 2 .. d] (\ k -> do
|
||||
forwardEndpoint <- findDPath graph Forward (EditDistance d) (Diagonal k)
|
||||
backwardV <- gets backward
|
||||
let reverseEndpoint = backwardV `at` k
|
||||
if odd delta && k `inInterval` (delta - pred d, delta + pred d) && overlaps forwardEndpoint reverseEndpoint then
|
||||
let reverseEndpoint = let x = backwardV `at` k in Endpoint x (x - k)
|
||||
if odd delta && k `inInterval` (delta - pred d, delta + pred d) && overlaps graph forwardEndpoint reverseEndpoint then
|
||||
return (Just (Snake reverseEndpoint forwardEndpoint, EditDistance $ 2 * d - 1))
|
||||
else
|
||||
continue)
|
||||
<*> for [negate d, negate d + 2 .. d] (\ k -> do
|
||||
reverseEndpoint <- findDPath graph Reverse (EditDistance d) (Diagonal (k + delta))
|
||||
forwardV <- gets forward
|
||||
let forwardEndpoint = forwardV `at` (k + delta)
|
||||
if even delta && (k + delta) `inInterval` (negate d, d) && overlaps forwardEndpoint reverseEndpoint then
|
||||
let forwardEndpoint = let x = forwardV `at` (k + delta) in Endpoint x (x - k)
|
||||
if even delta && (k + delta) `inInterval` (negate d, d) && overlaps graph forwardEndpoint reverseEndpoint then
|
||||
return (Just (Snake reverseEndpoint forwardEndpoint, EditDistance $ 2 * d))
|
||||
else
|
||||
continue)
|
||||
@ -125,10 +125,10 @@ decompose myers = let ?callStack = popCallStack callStack in case myers of
|
||||
eq <- getEq
|
||||
let prev = v `at` pred k
|
||||
let next = v `at` succ k
|
||||
let xy = if k == negate d || k /= d && x prev < x next
|
||||
let x = if k == negate d || k /= d && prev < next
|
||||
then next
|
||||
else let x' = succ (x prev) in Endpoint x' (x' - k)
|
||||
let Endpoint x' y' = slide 1 eq xy
|
||||
else succ prev
|
||||
let Endpoint x' y' = slide Reverse eq (Endpoint x (x - k))
|
||||
setForward (v Vector.// [(maxD + k, x')])
|
||||
return (Endpoint x' y')
|
||||
|
||||
@ -137,10 +137,10 @@ decompose myers = let ?callStack = popCallStack callStack in case myers of
|
||||
eq <- getEq
|
||||
let prev = v `at` pred k
|
||||
let next = v `at` succ k
|
||||
let xy = if k == negate d || k /= d && x prev < x next
|
||||
let x = if k == negate d || k /= d && prev < next
|
||||
then next
|
||||
else let x' = succ (x prev) in Endpoint x' (x' - k)
|
||||
let Endpoint x' y' = slide (negate 1) eq xy
|
||||
else succ prev
|
||||
let Endpoint x' y' = slide Reverse eq (Endpoint x (x - k))
|
||||
setBackward (v Vector.// [(maxD + k, x')])
|
||||
return (Endpoint x' y')
|
||||
|
||||
@ -151,14 +151,17 @@ decompose myers = let ?callStack = popCallStack callStack in case myers of
|
||||
delta = n - m
|
||||
maxD = (m + n) `ceilDiv` 2
|
||||
|
||||
at v k = let x = v ! maxD + k in Endpoint x (x - k)
|
||||
at v k = v ! maxD + k
|
||||
|
||||
slide by eq (Endpoint x y)
|
||||
slide dir eq (Endpoint x y)
|
||||
| x >= 0, x < length as
|
||||
, y >= 0, y < length bs
|
||||
, (as ! x) `eq` (bs ! y) = slide by eq (Endpoint (x + by) (y + by))
|
||||
, nth dir as x `eq` nth dir bs y = slide dir eq (Endpoint (succ x) (succ y))
|
||||
| otherwise = Endpoint x y
|
||||
|
||||
nth Forward v i = v ! i
|
||||
nth Reverse v i = v ! (length v - 1 - i)
|
||||
|
||||
|
||||
-- Smart constructors
|
||||
|
||||
@ -188,8 +191,8 @@ setForward v = modify (\ s -> s { forward = v })
|
||||
setBackward :: Vector.Vector Int -> Myers a ()
|
||||
setBackward v = modify (\ s -> s { backward = v })
|
||||
|
||||
overlaps :: Endpoint -> Endpoint -> Bool
|
||||
overlaps (Endpoint x y) (Endpoint u v) = x - y == u - v && x <= u
|
||||
overlaps :: EditGraph a -> Endpoint -> Endpoint -> Bool
|
||||
overlaps (EditGraph as _) (Endpoint x y) (Endpoint u v) = x - y == u - v && x <= length as - u
|
||||
|
||||
inInterval :: Ord a => a -> (a, a) -> Bool
|
||||
inInterval k (lower, upper) = k >= lower && k <= upper
|
||||
|
Loading…
Reference in New Issue
Block a user