/// A node in a syntax tree. Expressed algebraically to enable representation of both normal syntax trees and their diffs. public enum Syntax: CustomDebugStringConvertible { case Leaf(A) case Indexed([Recur]) case Fixed([Recur]) case Keyed([String:Recur]) // MARK: Functor public func map(@noescape transform: Recur -> T) -> Syntax { switch self { case let .Leaf(n): return .Leaf(n) case let .Indexed(x): return .Indexed(x.map(transform)) case let .Fixed(x): return .Fixed(x.map(transform)) case let .Keyed(d): return .Keyed(Dictionary(elements: d.map { ($0, transform($1)) })) } } // MARK: CustomDebugStringConvertible public var debugDescription: String { switch self { case let .Leaf(n): return ".Leaf(\(n))" case let .Indexed(x): return ".Indexed(\(String(reflecting: x)))" case let .Fixed(x): return ".Fixed(\(String(reflecting: x)))" case let .Keyed(d): return ".Keyed(\(String(reflecting: d)))" } } } // MARK: - Hylomorphism /// Hylomorphism through `Syntax`. /// /// A hylomorphism (from the Aristotelian philosophy that form and matter are one) is a function of type `A → B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, it’s the composition of a catamorphism (see also `cata`) and an anamorphism (see also `ana`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`). /// /// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`. /// /// `hylo` can be used with arbitrary functors which can eliminate to and introduce with `Syntax` values. public func hylo(down: Syntax -> B, _ up: A -> Syntax) -> A -> B { return up >>> { $0.map(hylo(down, up)) } >>> down } /// Reiteration through `Syntax`. /// /// This is a form of hylomorphism (from the Aristotelian philosophy that form and matter are one). As such, it returns a function of type `A → B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, it’s the composition of a catamorphism (see also `cata`) and an anamorphism (see also `ana`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`). /// /// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`. /// /// `hylo` can be used with arbitrary functors which can eliminate to and introduce with `Annotation` & `Syntax` pairs. public func hylo(down: (Annotation, Syntax) -> B, _ up: A -> (Annotation, Syntax)) -> A -> B { return up >>> { ($0, $1.map(hylo(down, up))) } >>> down } // MARK: - ArrayLiteralConvertible extension Syntax: ArrayLiteralConvertible { public init(arrayLiteral: Recur...) { self = .Indexed(arrayLiteral) } } // MARK: - DictionaryLiteralConvertible extension Syntax: DictionaryLiteralConvertible { public init(dictionaryLiteral elements: (String, Recur)...) { self = .Keyed(Dictionary(elements: elements)) } } // MARK: - Equality extension Syntax { public static func equals(leaf leaf: (A, A) -> Bool, recur: (Recur, Recur) -> Bool)(_ left: Syntax, _ right: Syntax) -> Bool { switch (left, right) { case let (.Leaf(l1), .Leaf(l2)): return leaf(l1, l2) case let (.Indexed(v1), .Indexed(v2)): return v1.count == v2.count && zip(v1, v2).lazy.map(recur).reduce(true) { $0 && $1 } case let (.Fixed(v1), .Fixed(v2)): return v1.count == v2.count && zip(v1, v2).lazy.map(recur).reduce(true) { $0 && $1 } case let (.Keyed(d1), .Keyed(d2)): return Set(d1.keys) == Set(d2.keys) && d1.keys.map { recur(d1[$0]!, d2[$0]!) }.reduce(true) { $0 && $1 } default: return false } } } public func == (left: Syntax, right: Syntax) -> Bool { return Syntax.equals(leaf: ==, recur: ==)(left, right) } // MARK: - JSON extension Syntax { public func JSON(@noescape leaf leaf: A -> Doubt.JSON, @noescape recur: Recur -> Doubt.JSON) -> Doubt.JSON { switch self { case let .Leaf(a): return [ "leaf": leaf(a) ] case let .Indexed(a): return [ "indexed": .Array(a.map(recur)) ] case let .Fixed(a): return [ "fixed": .Array(a.map(recur)) ] case let .Keyed(d): return [ "keyed": .Dictionary(Dictionary(elements: d.map { ($0, recur($1)) })) ] } } } import Prelude