module Main where import qualified InterpreterSpec import qualified OrderedMapSpec import Categorizable import Diff import Interpreter import Patch import Range import Split import Syntax import Term import Control.Comonad.Cofree import Control.Monad import Control.Monad.Free hiding (unfold) import qualified Data.List as List import qualified OrderedMap as Map import qualified Data.Set as Set import GHC.Generics import Test.Hspec import Test.Hspec.QuickCheck import Test.QuickCheck hiding (Fixed) newtype ArbitraryTerm a annotation = ArbitraryTerm (annotation, (Syntax a (ArbitraryTerm a annotation))) deriving (Show, Eq, Generic) unTerm :: ArbitraryTerm a annotation -> Term a annotation unTerm arbitraryTerm = unfold unpack arbitraryTerm where unpack (ArbitraryTerm (annotation, syntax)) = (annotation, syntax) instance (Eq a, Eq annotation, Arbitrary a, Arbitrary annotation) => Arbitrary (ArbitraryTerm a annotation) where arbitrary = sized (\ x -> boundedTerm x x) -- first indicates the cube of the max length of lists, second indicates the cube of the max depth of the tree where boundedTerm maxLength maxDepth = ArbitraryTerm <$> ((,) <$> arbitrary <*> boundedSyntax maxLength maxDepth) boundedSyntax _ maxDepth | maxDepth <= 0 = liftM Leaf arbitrary boundedSyntax maxLength maxDepth = frequency [ (12, liftM Leaf arbitrary), (1, liftM Indexed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)), (1, liftM Fixed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)), (1, liftM (Keyed . Map.fromList) $ take maxLength <$> listOf (arbitrary >>= (\x -> ((,) x) <$> smallerTerm maxLength maxDepth))) ] smallerTerm maxLength maxDepth = boundedTerm (div maxLength 3) (div maxDepth 3) shrink term@(ArbitraryTerm (annotation, syntax)) = (++) (subterms term) $ filter (/= term) $ ArbitraryTerm <$> ((,) <$> shrink annotation <*> case syntax of Leaf a -> Leaf <$> shrink a Indexed i -> Indexed <$> (List.subsequences i >>= recursivelyShrink) Fixed f -> Fixed <$> (List.subsequences f >>= recursivelyShrink) Keyed k -> Keyed . Map.fromList <$> (List.subsequences (Map.toList k) >>= recursivelyShrink)) data CategorySet = A | B | C | D deriving (Eq, Show) instance Categorizable CategorySet where categories A = Set.fromList [ "a" ] categories B = Set.fromList [ "b" ] categories C = Set.fromList [ "c" ] categories D = Set.fromList [ "d" ] instance Arbitrary CategorySet where arbitrary = elements [ A, B, C, D ] instance Arbitrary HTML where arbitrary = oneof [ Text <$> arbitrary, Span <$> arbitrary <*> arbitrary, const Break <$> (arbitrary :: Gen ()) ] instance Arbitrary Line where arbitrary = oneof [ Line <$> arbitrary <*> arbitrary, const EmptyLine <$> (arbitrary :: Gen ()) ] instance Arbitrary Row where arbitrary = oneof [ Row <$> arbitrary <*> arbitrary ] main :: IO () main = hspec $ do describe "Term" $ do prop "equality is reflexive" $ \ a -> unTerm a == unTerm (a :: ArbitraryTerm String ()) describe "Diff" $ do prop "equality is reflexive" $ \ a b -> let diff = interpret comparable (unTerm a) (unTerm (b :: ArbitraryTerm String CategorySet)) in diff == diff prop "equal terms produce identity diffs" $ \ a -> let term = unTerm (a :: ArbitraryTerm String CategorySet) in diffCost (interpret comparable term term) == 0 describe "annotatedToRows" $ do it "outputs one row for single-line unchanged leaves" $ annotatedToRows (unchanged "a" "leaf" (Leaf "")) "a" "a" `shouldBe` ([ Row (Line False [ span "a" ]) (Line False [ span "a" ]) ], (Range 0 1, Range 0 1)) it "outputs one row for single-line empty unchanged indexed nodes" $ annotatedToRows (unchanged "[]" "branch" (Indexed [])) "[]" "[]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) ], (Range 0 2, Range 0 2)) it "outputs one row for single-line non-empty unchanged indexed nodes" $ annotatedToRows (unchanged "[ a, b ]" "branch" (Indexed [ Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""), Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "") ])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 8)) it "outputs one row for single-line non-empty formatted indexed nodes" $ annotatedToRows (formatted "[ a, b ]" "[ a, b ]" "branch" (Indexed [ Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""), Free . offsetAnnotated 5 6 $ unchanged "b" "leaf" (Leaf "") ])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 9)) it "outputs two rows for two-line non-empty unchanged indexed nodes" $ annotatedToRows (unchanged "[ a,\nb ]" "branch" (Indexed [ Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""), Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "") ])) "[ a,\nb ]" "[ a,\nb ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break] ]), Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 8)) it "outputs two rows for two-line non-empty formatted indexed nodes" $ annotatedToRows (formatted "[ a,\nb ]" "[\na,\nb ]" "branch" (Indexed [ Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""), Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "") ])) "[ a,\nb ]" "[\na,\nb ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ]) (Line False [ Ul (Just "category-branch") [ Text "[", Break ] ]), Row EmptyLine (Line False [ Ul (Just "category-branch") [ span "a", Text ",", Break ] ]), Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 8)) it "" $ let (sourceA, sourceB) = ("[\na\n,\nb]", "[a,b]") in annotatedToRows (formatted sourceA sourceB "branch" (Indexed [ Free . offsetAnnotated 2 1 $ unchanged "a" "leaf" (Leaf ""), Free . offsetAnnotated 6 3 $ unchanged "b" "leaf" (Leaf "") ])) sourceA sourceB `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[", Break ] ]) (Line False [ Ul (Just "category-branch") [ Text "[", span "a", Text ",", span "b", Text "]" ] ]), Row (Line False [ Ul (Just "category-branch") [ span "a", Break ] ]) EmptyLine, Row (Line False [ Ul (Just "category-branch") [ Text ",", Break ] ]) EmptyLine, Row (Line False [ Ul (Just "category-branch") [ span "b", Text "]" ] ]) EmptyLine ], (Range 0 8, Range 0 5)) it "should split multi-line deletions across multiple rows" $ let (sourceA, sourceB) = ("/*\n*/\na", "a") in annotatedToRows (formatted sourceA sourceB "branch" (Indexed [ Pure . Delete $ (Info (Range 0 5) (Set.fromList ["leaf"]) :< (Leaf "")), Free . offsetAnnotated 6 0 $ unchanged "a" "leaf" (Leaf "") ])) sourceA sourceB `shouldBe` ([ Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "/*", Break ] ] ]) EmptyLine, Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "*/" ], Break ] ]) EmptyLine, Row (Line False [ Ul (Just "category-branch") [ span "a" ] ]) (Line False [ Ul (Just "category-branch") [ span "a" ] ]) ], (Range 0 7, Range 0 1)) describe "unicode" $ it "equivalent precomposed and decomposed characters are not equal" $ let (sourceA, sourceB) = ("t\776", "\7831") syntax = Leaf . Pure $ Replace (info sourceA "leaf" :< (Leaf "")) (info sourceB "leaf" :< (Leaf "")) in annotatedToRows (formatted sourceA sourceB "leaf" syntax) sourceA sourceB `shouldBe` ([ Row (Line False [ span "t\776" ]) (Line False [ span "\7831"]) ], (Range 0 2, Range 0 1)) describe "adjoin2" $ do prop "is idempotent for additions of empty rows" $ \ a -> adjoin2 (adjoin2 [ a ] mempty) mempty == (adjoin2 [ a ] mempty) prop "is identity on top of empty rows" $ \ a -> adjoin2 [ mempty ] a == [ a ] prop "is identity on top of no rows" $ \ a -> adjoin2 [] a == [ a ] it "appends appends HTML onto incomplete lines" $ adjoin2 [ rightRowText "[" ] (rightRowText "a") `shouldBe` [ rightRow [ Text "[", Text "a" ] ] it "does not append HTML onto complete lines" $ adjoin2 [ leftRow [ Break ] ] (leftRowText ",") `shouldBe` [ leftRowText ",", leftRow [ Break ] ] it "appends breaks onto incomplete lines" $ adjoin2 [ leftRowText "a" ] (leftRow [ Break ]) `shouldBe` [ leftRow [ Text "a", Break ] ] it "does not promote HTML through empty lines onto complete lines" $ adjoin2 [ rightRowText "b", leftRow [ Break ] ] (leftRowText "a") `shouldBe` [ leftRowText "a", rightRowText "b", leftRow [ Break ] ] it "promotes breaks through empty lines onto incomplete lines" $ adjoin2 [ rightRowText "c", rowText "a" "b" ] (leftRow [ Break ]) `shouldBe` [ rightRowText "c", Row (Line False [ Text "a", Break ]) (Line False [ Text "b" ]) ] describe "termToLines" $ do it "splits multi-line terms into multiple lines" $ termToLines (Info (Range 0 5) (Set.singleton "leaf") :< (Leaf "")) "/*\n*/" `shouldBe` ([ Line True [ span "/*", Break ], Line True [ span "*/" ] ], Range 0 5) describe "openLine" $ do it "should produce the earliest non-empty line in a list, if open" $ openLine [ Line True [ Div (Just "delete") [ span "*/" ] ], Line True [ Div (Just "delete") [ span " * Debugging", Break ] ], Line True [ Div (Just "delete") [ span "/*", Break ] ] ] `shouldBe` (Just $ Line True [ Div (Just "delete") [ span "*/" ] ]) it "should return Nothing if the earliest non-empty line is closed" $ openLine [ Line True [ Div (Just "delete") [ span " * Debugging", Break ] ] ] `shouldBe` Nothing describe "rangesAndWordsFrom" $ do it "should produce no ranges for the empty string" $ rangesAndWordsFrom 0 [] `shouldBe` [] it "should produce no ranges for whitespace" $ rangesAndWordsFrom 0 " \t\n " `shouldBe` [] it "should produce a list containing the range of the string for a single-word string" $ rangesAndWordsFrom 0 "word" `shouldBe` [ (Range 0 4, "word") ] it "should produce a list of ranges for whitespace-separated words" $ rangesAndWordsFrom 0 "wordOne wordTwo" `shouldBe` [ (Range 0 7, "wordOne"), (Range 8 15, "wordTwo") ] it "should skip multiple whitespace characters" $ rangesAndWordsFrom 0 "a b" `shouldBe` [ (Range 0 1, "a"), (Range 3 4, "b") ] it "should skip whitespace at the start" $ rangesAndWordsFrom 0 " a b" `shouldBe` [ (Range 2 3, "a"), (Range 4 5, "b") ] it "should skip whitespace at the end" $ rangesAndWordsFrom 0 "a b " `shouldBe` [ (Range 0 1, "a"), (Range 2 3, "b") ] it "should produce ranges offset by its start index" $ rangesAndWordsFrom 100 "a b" `shouldBe` [ (Range 100 101, "a"), (Range 102 103, "b") ] describe "OrderedMap" OrderedMapSpec.spec describe "InterpreterSpec" InterpreterSpec.spec where rightRowText text = rightRow [ Text text ] rightRow xs = Row EmptyLine (Line False xs) leftRowText text = leftRow [ Text text ] leftRow xs = Row (Line False xs) EmptyLine rowText a b = Row (Line False [ Text a ]) (Line False [ Text b ]) info source category = Info (totalRange source) (Set.fromList [ category ]) unchanged source category = formatted source source category formatted source1 source2 category = Annotated (info source1 category, info source2 category) offsetInfo by (Info (Range start end) categories) = Info (Range (start + by) (end + by)) categories offsetAnnotated by1 by2 (Annotated (left, right) syntax) = Annotated (offsetInfo by1 left, offsetInfo by2 right) syntax span = Span (Just "category-leaf")