module ArbitraryTerm where import Category import Syntax import Term import Control.Comonad.Cofree import Control.Monad import qualified Data.OrderedMap as Map import qualified Data.List as List import qualified Data.Set as Set import GHC.Generics import Test.QuickCheck hiding (Fixed) import Data.Text.Arbitrary () newtype ArbitraryTerm a annotation = ArbitraryTerm (annotation, Syntax a (ArbitraryTerm a annotation)) deriving (Show, Eq, Generic) unTerm :: ArbitraryTerm a annotation -> Term a annotation unTerm = unfold unpack where unpack (ArbitraryTerm (annotation, syntax)) = (annotation, syntax) instance (Eq a, Eq annotation, Arbitrary a, Arbitrary annotation) => Arbitrary (ArbitraryTerm a annotation) where arbitrary = scale (`div` 2) $ sized (\ x -> boundedTerm x x) -- first indicates the cube of the max length of lists, second indicates the cube of the max depth of the tree where boundedTerm maxLength maxDepth = ArbitraryTerm <$> ((,) <$> arbitrary <*> boundedSyntax maxLength maxDepth) boundedSyntax _ maxDepth | maxDepth <= 0 = liftM Leaf arbitrary boundedSyntax maxLength maxDepth = frequency [ (12, liftM Leaf arbitrary), (1, liftM Indexed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)), (1, liftM Fixed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)), (1, liftM (Keyed . Map.fromList) $ take maxLength <$> listOf (arbitrary >>= (\x -> (,) x <$> smallerTerm maxLength maxDepth))) ] smallerTerm maxLength maxDepth = boundedTerm (div maxLength 3) (div maxDepth 3) shrink term@(ArbitraryTerm (annotation, syntax)) = (++) (subterms term) $ filter (/= term) $ ArbitraryTerm <$> ((,) <$> shrink annotation <*> case syntax of Leaf a -> Leaf <$> shrink a Indexed i -> Indexed <$> (List.subsequences i >>= recursivelyShrink) Fixed f -> Fixed <$> (List.subsequences f >>= recursivelyShrink) Keyed k -> Keyed . Map.fromList <$> (List.subsequences (Map.toList k) >>= recursivelyShrink)) data CategorySet = A | B | C | D deriving (Eq, Show) instance Categorizable CategorySet where categories A = Set.fromList [ Other "a" ] categories B = Set.fromList [ Other "b" ] categories C = Set.fromList [ Other "c" ] categories D = Set.fromList [ Other "d" ] instance Arbitrary CategorySet where arbitrary = elements [ A, B, C, D ]