mirror of
https://github.com/github/semantic.git
synced 2024-12-01 09:15:01 +03:00
119 lines
4.3 KiB
Swift
119 lines
4.3 KiB
Swift
/// A node in a syntax tree. Expressed algebraically to enable representation of both normal syntax trees and their diffs.
|
||
public enum Syntax<Recur, A>: CustomDebugStringConvertible {
|
||
case Leaf(A)
|
||
case Indexed([Recur])
|
||
case Keyed([String:Recur])
|
||
|
||
|
||
// MARK: Functor
|
||
|
||
public func map<T>(@noescape transform: Recur -> T) -> Syntax<T, A> {
|
||
switch self {
|
||
case let .Leaf(n):
|
||
return .Leaf(n)
|
||
case let .Indexed(x):
|
||
return .Indexed(x.map(transform))
|
||
case let .Keyed(d):
|
||
return .Keyed(Dictionary(elements: d.map { ($0, transform($1)) }))
|
||
}
|
||
}
|
||
|
||
|
||
// MARK: CustomDebugStringConvertible
|
||
|
||
public var debugDescription: String {
|
||
switch self {
|
||
case let .Leaf(n):
|
||
return ".Leaf(\(n))"
|
||
case let .Indexed(x):
|
||
return ".Indexed(\(String(reflecting: x)))"
|
||
case let .Keyed(d):
|
||
return ".Keyed(\(String(reflecting: d)))"
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
// MARK: - Hylomorphism
|
||
|
||
/// Hylomorphism through `Syntax`.
|
||
///
|
||
/// A hylomorphism (from the Aristotelian philosophy that form and matter are one) is a function of type `A → B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, it’s the composition of a catamorphism (see also `TermType.cata`, `Free.iterate`) and an anamorphism (see also `Free.ana`, `CofreeType.coiterate`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`).
|
||
///
|
||
/// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`.
|
||
///
|
||
/// `hylo` can be used with arbitrary functors which can eliminate to and introduce with `Syntax` values.
|
||
public func hylo<A, B, Leaf>(down: Syntax<B, Leaf> -> B, _ up: A -> Syntax<A, Leaf>) -> A -> B {
|
||
return up >>> { $0.map(hylo(down, up)) } >>> down
|
||
}
|
||
|
||
/// Reiteration through `Syntax`.
|
||
///
|
||
/// This is a form of hylomorphism (from the Aristotelian philosophy that form and matter are one). As such, it returns a function of type `A → B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, it’s the composition of a catamorphism (see also `TermType.cata`, `Free.iterate`) and an anamorphism (see also `Free.ana`, `CofreeType.coiterate`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`).
|
||
///
|
||
/// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`.
|
||
///
|
||
/// `reiterate` can be used with arbitrary functors which can eliminate to and introduce with `Annotation` & `Syntax` pairs.
|
||
public func reiterate<A, B, Leaf, Annotation>(down: (Annotation, Syntax<B, Leaf>) -> B, _ up: A -> (Annotation, Syntax<A, Leaf>)) -> A -> B {
|
||
return up >>> { ($0, $1.map(reiterate(down, up))) } >>> down
|
||
}
|
||
|
||
|
||
// MARK: - ArrayLiteralConvertible
|
||
|
||
extension Syntax: ArrayLiteralConvertible {
|
||
public init(arrayLiteral: Recur...) {
|
||
self = .Indexed(arrayLiteral)
|
||
}
|
||
}
|
||
|
||
|
||
// MARK: - DictionaryLiteralConvertible
|
||
|
||
extension Syntax: DictionaryLiteralConvertible {
|
||
public init(dictionaryLiteral elements: (String, Recur)...) {
|
||
self = .Keyed(Dictionary(elements: elements))
|
||
}
|
||
}
|
||
|
||
|
||
// MARK: - Equality
|
||
|
||
extension Syntax {
|
||
public static func equals(leaf leaf: (A, A) -> Bool, recur: (Recur, Recur) -> Bool)(_ left: Syntax<Recur, A>, _ right: Syntax<Recur, A>) -> Bool {
|
||
switch (left, right) {
|
||
case let (.Leaf(l1), .Leaf(l2)):
|
||
return leaf(l1, l2)
|
||
case let (.Indexed(v1), .Indexed(v2)):
|
||
return v1.count == v2.count && zip(v1, v2).lazy.map(recur).reduce(true) { $0 && $1 }
|
||
case let (.Keyed(d1), .Keyed(d2)):
|
||
return Set(d1.keys) == Set(d2.keys) && d1.keys.map { recur(d1[$0]!, d2[$0]!) }.reduce(true) { $0 && $1 }
|
||
default:
|
||
return false
|
||
}
|
||
}
|
||
}
|
||
|
||
public func == <F: Equatable, A: Equatable> (left: Syntax<F, A>, right: Syntax<F, A>) -> Bool {
|
||
return Syntax.equals(leaf: ==, recur: ==)(left, right)
|
||
}
|
||
|
||
|
||
// MARK: - JSON
|
||
|
||
extension Syntax {
|
||
public func JSON(@noescape leaf leaf: A -> Doubt.JSON, @noescape recur: Recur -> Doubt.JSON) -> Doubt.JSON {
|
||
switch self {
|
||
case let .Leaf(a):
|
||
return leaf(a)
|
||
case let .Indexed(a):
|
||
return .Array(a.map(recur))
|
||
case let .Keyed(d):
|
||
return .Dictionary(Dictionary(elements: d.map { ($0, recur($1)) }))
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
import Prelude
|