1
1
mirror of https://github.com/github/semantic.git synced 2024-11-24 08:54:07 +03:00
semantic/test/ArbitraryTerm.hs
2015-12-22 12:54:01 -05:00

48 lines
2.3 KiB
Haskell

module ArbitraryTerm where
import Categorizable
import Syntax
import Term
import Control.Comonad.Cofree
import Control.Monad
import qualified OrderedMap as Map
import qualified Data.List as List
import qualified Data.Set as Set
import GHC.Generics
import Test.QuickCheck hiding (Fixed)
newtype ArbitraryTerm a annotation = ArbitraryTerm (annotation, Syntax a (ArbitraryTerm a annotation))
deriving (Show, Eq, Generic)
unTerm :: ArbitraryTerm a annotation -> Term a annotation
unTerm = unfold unpack
where unpack (ArbitraryTerm (annotation, syntax)) = (annotation, syntax)
instance (Eq a, Eq annotation, Arbitrary a, Arbitrary annotation) => Arbitrary (ArbitraryTerm a annotation) where
arbitrary = sized (\ x -> boundedTerm x x) -- first indicates the cube of the max length of lists, second indicates the cube of the max depth of the tree
where boundedTerm maxLength maxDepth = ArbitraryTerm <$> ((,) <$> arbitrary <*> boundedSyntax maxLength maxDepth)
boundedSyntax _ maxDepth | maxDepth <= 0 = liftM Leaf arbitrary
boundedSyntax maxLength maxDepth = frequency
[ (12, liftM Leaf arbitrary),
(1, liftM Indexed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
(1, liftM Fixed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
(1, liftM (Keyed . Map.fromList) $ take maxLength <$> listOf (arbitrary >>= (\x -> (,) x <$> smallerTerm maxLength maxDepth))) ]
smallerTerm maxLength maxDepth = boundedTerm (div maxLength 3) (div maxDepth 3)
shrink term@(ArbitraryTerm (annotation, syntax)) = (++) (subterms term) $ filter (/= term) $
ArbitraryTerm <$> ((,) <$> shrink annotation <*> case syntax of
Leaf a -> Leaf <$> shrink a
Indexed i -> Indexed <$> (List.subsequences i >>= recursivelyShrink)
Fixed f -> Fixed <$> (List.subsequences f >>= recursivelyShrink)
Keyed k -> Keyed . Map.fromList <$> (List.subsequences (Map.toList k) >>= recursivelyShrink))
data CategorySet = A | B | C | D deriving (Eq, Show)
instance Categorizable CategorySet where
categories A = Set.fromList [ "a" ]
categories B = Set.fromList [ "b" ]
categories C = Set.fromList [ "c" ]
categories D = Set.fromList [ "d" ]
instance Arbitrary CategorySet where
arbitrary = elements [ A, B, C, D ]