mirror of
https://github.com/google/sentencepiece.git
synced 2025-01-04 06:41:54 +03:00
139 lines
2.7 KiB
Plaintext
139 lines
2.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### You can add new special tokens to pre-trained sentencepiece model\n",
|
|
"#### Run this code in google/sentencepiece/python/"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load pre-trained sentencepiece model\n",
|
|
"Pre-trained model is needed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"371391"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import sentencepiece_model_pb2 as model\n",
|
|
"m = model.ModelProto()\n",
|
|
"m.ParseFromString(open(\"old.model\", \"rb\").read())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load tokens want to add\n",
|
|
"Prepare the list of new tokens want to add"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['[UNK]',\n",
|
|
" '[PAD]',\n",
|
|
" '[CLS]',\n",
|
|
" '[SEP]',\n",
|
|
" '[MASK]',\n",
|
|
" '[EOS]',\n",
|
|
" '[DOMAIN]',\n",
|
|
" '[SLOT]',\n",
|
|
" '[ACTION]']"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"special_tokens = open(\"special_tokens.txt\", \"r\").read().split(\"\\n\")\n",
|
|
"special_tokens"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Add new tokens to sentencepiece model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for token in special_tokens:\n",
|
|
" new_token = model.ModelProto().SentencePiece()\n",
|
|
" new_token.piece = token\n",
|
|
" new_token.score = 0\n",
|
|
" m.pieces.append(new_token)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Save new sentencepiece model\n",
|
|
"Load the new sentencepiece model to your NLP system"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('new.model', 'wb') as f:\n",
|
|
" f.write(m.SerializeToString())"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|