sentencepiece/python
2023-08-05 09:01:02 +00:00
..
src/sentencepiece Improves the thread utilization in batch encoding/decoding 2023-08-05 09:01:02 +00:00
test Updated the document. 2022-08-06 19:24:41 +09:00
.gitignore supported pickle serialization 2020-05-18 11:18:57 +09:00
add_new_vocab.ipynb fix the path in add_new_vocab.ipynb 2022-12-12 15:39:18 +09:00
build_bundled.sh includes the sentencepiece source files in python source package 2023-04-04 03:15:11 +00:00
build_sdist.sh includes the sentencepiece source files in python source package 2023-04-04 03:15:11 +00:00
MANIFEST.in includes the sentencepiece source files in python source package 2023-04-04 03:15:11 +00:00
README.md Updated the document 2022-08-06 20:41:00 +09:00
sentencepiece_python_module_example.ipynb Update sentencepiece_python_module_example.ipynb 2023-04-08 23:26:13 +09:00
setup.cfg Update setup.cfg to use underscore for 'description_file' instead of dash 'description-file' since it loses support in future versions 2022-05-13 10:33:38 -04:00
setup.py includes the sentencepiece source files in python source package 2023-04-04 03:15:11 +00:00

SentencePiece Python Wrapper

Python wrapper for SentencePiece. This API will offer the encoding, decoding and training of Sentencepiece.

Build and Install SentencePiece

For Linux (x64/i686), macOS, and Windows(win32/x64) environment, you can simply use pip command to install SentencePiece python module.

% pip install sentencepiece

To build and install the Python wrapper from source, try the following commands to build and install wheel package.

% git clone https://github.com/google/sentencepiece.git 
% cd sentencepiece
% mkdir build
% cd build
% cmake .. -DSPM_ENABLE_SHARED=OFF -DCMAKE_INSTALL_PREFIX=./root
% make install
% cd ../python
% python setup.py bdist_wheel
% pip install dist/sentencepiece*.whl

If you dont have write permission to the global site-packages directory or dont want to install into it, please try:

% python setup.py install --user

Usage

See this google colab page to run sentencepiece interactively.

Segmentation

% python
>>> import sentencepiece as spm
>>> sp = spm.SentencePieceProcessor(model_file='test/test_model.model')

>>> sp.encode('This is a test')
[284, 47, 11, 4, 15, 400]

>>> sp.encode(['This is a test', 'Hello world'], out_type=int)
[[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]]

>>> sp.encode_as_ids(['This is a test', 'Hello world'])
[[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]]

>>> sp.encode('This is a test', out_type=str)
['▁This', '▁is', '▁a', '▁', 't', 'est']

>>> sp.encode(['This is a test', 'Hello world'], out_type=str)
[['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']]

>>> sp.encode_as_pieces(['This is a test', 'Hello world'])
[['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']]

>>> proto = sp.encode('This is a test', out_type='immutable_proto')
>>> for n in proto.pieces:
...     print('piece="{}" surface="{}" id={} begin={} end={}'.format(n.piece, n.surface, n.id, n.begin, n.end))
... 
piece="▁This" surface="This" id=284 begin=0 end=4
piece="▁is" surface=" is" id=47 begin=4 end=7
piece="▁a" surface=" a" id=11 begin=7 end=9
piece="▁" surface=" " id=4 begin=9 end=10
piece="t" surface="t" id=15 begin=10 end=11
piece="est" surface="est" id=400 begin=11 end=14

>>> [[x.id for x in proto.pieces], [x.piece for x in proto.pieces], [x.begin for x in proto.pieces], [x.end for x in proto.pieces]]
[[284, 47, 11, 4, 15, 400], ['▁This', '▁is', '▁a', '▁', 't', 'est'], [0, 4, 7, 9, 10, 11], [4, 7, 9, 10, 11, 14]]

>>> proto2 = sp.encode_as_immutable_proto('This is a test')
>>> proto2 == proto
True

>>> for _ in range(10):
...     sp.encode('This is a test', out_type=str, enable_sampling=True, alpha=0.1, nbest_size=-1)
... 
['▁', 'This', '▁', 'is', '▁a', '▁', 't', 'e', 'st']
['▁T', 'h', 'i', 's', '▁is', '▁a', '▁', 'te', 's', 't']
['▁T', 'h', 'is', '▁', 'is', '▁', 'a', '▁', 't', 'est']
['▁', 'This', '▁is', '▁', 'a', '▁', 't', 'e', 'st']
['▁', 'This', '▁', 'is', '▁', 'a', '▁', 't', 'e', 's', 't']
['▁This', '▁is', '▁a', '▁', 'te', 's', 't']
['▁This', '▁is', '▁', 'a', '▁', 't', 'e', 'st']
['▁', 'T', 'h', 'is', '▁', 'is', '▁', 'a', '▁', 'te', 'st']
['▁', 'This', '▁', 'i', 's', '▁a', '▁', 't', 'e', 'st']
['▁This', '▁', 'is', '▁a', '▁', 't', 'est']

>> sp.nbest_encode('This is a test', nbest_size=5, out_type=str)
[['▁This', '▁is', '▁a', '▁', 't', 'est'], 
['▁This', '▁is', '▁a', '▁', 'te', 'st'], 
['▁This', '▁is', '▁a', '▁', 'te', 's', 't'],
['▁This', '▁is', '▁a', '▁', 't', 'e', 'st'],
['▁This', '▁is', '▁a', '▁', 't', 'es', 't']]

>>> sp.sample_encode_and_score('This is a test', num_samples=5, alpha=0.1, out_type=str, wor=True)
[(['▁This', '▁', 'i', 's', '▁a', '▁', 'te', 's', 't'], -3.043105125427246),
(['▁This', '▁', 'i', 's', '▁a', '▁', 'te', 'st'], -2.8475849628448486),
(['▁', 'This', '▁is', '▁', 'a', '▁', 'te', 'st'], -3.043248176574707),
(['▁', 'This', '▁is', '▁a', '▁', 't', 'e', 'st'], -2.87727689743042),
(['▁', 'This', '▁', 'i', 's', '▁', 'a', '▁', 't', 'est'], -3.6284031867980957)]

>>> sp.decode([284, 47, 11, 4, 15, 400])
'This is a test'

>>> sp.decode([[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]])
['This is a test', 'Hello world']

>>> proto = sp.decode([284, 47, 11, 4, 15, 400], out_type='immutable_proto') 
>>> proto.text
'This is a test'

>>> sp.decode(['▁', 'This', '▁', 'is', '▁a', '▁', 't', 'e', 'st'])
'This is a test'

>>> sp.decode([['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']])
['This is a test', 'Hello world']

>>> sp.get_piece_size()
1000

>>> sp.id_to_piece(2)
'</s>'

>>> sp.id_to_piece([2, 3, 4])
['</s>', '\r', '▁']

>>> sp.piece_to_id('<s>')
1

>>> sp.piece_to_id(['</s>', '\r', '▁'])
[2, 3, 4]

>>> len(sp)
1000

>>> sp['</s>']
2

Model Training

Training is performed by passing parameters of spm_train to SentencePieceTrainer.train() function.

>>> import sentencepiece as spm
>>> spm.SentencePieceTrainer.train(input='test/botchan.txt', model_prefix='m', vocab_size=1000, user_defined_symbols=['foo', 'bar'])
sentencepiece_trainer.cc(73) LOG(INFO) Starts training with : 
trainer_spec {
  input: test/botchan.txt
  .. snip
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=1 size=1188 obj=10.2839 num_tokens=32182 num_tokens/piece=27.0892
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=0 size=1100 obj=10.4269 num_tokens=33001 num_tokens/piece=30.0009
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=1 size=1100 obj=10.4069 num_tokens=33002 num_tokens/piece=30.0018
trainer_interface.cc(595) LOG(INFO) Saving model: m.model
trainer_interface.cc(619) LOG(INFO) Saving vocabs: m.vocab
>>>

Training without local filesystem

Sentencepiece trainer can receive any iterable object to feed training sentences. You can also pass a file object (instance with write() method) to emit the output model to any devices. These features are useful to run sentencepiece on environment that have limited access to the local file system (e.g., Google colab.)

import urllib.request
import io
import sentencepiece as spm

# Loads model from URL as iterator and stores the model to BytesIO.
model = io.BytesIO()
with urllib.request.urlopen(
    'https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt'
) as response:
  spm.SentencePieceTrainer.train(
      sentence_iterator=response, model_writer=model, vocab_size=1000)

# Serialize the model as file.
# with open('out.model', 'wb') as f:
#   f.write(model.getvalue())

# Directly load the model from serialized model.
sp = spm.SentencePieceProcessor(model_proto=model.getvalue())
print(sp.encode('this is test'))