rust-bert/tests/roberta.rs

297 lines
11 KiB
Rust
Raw Normal View History

use std::path::PathBuf;
use tch::{Device, nn, Tensor, no_grad};
use rust_tokenizers::{RobertaTokenizer, TruncationStrategy, Tokenizer, Vocab};
use rust_bert::BertConfig;
use rust_bert::roberta::roberta::{RobertaForMaskedLM, RobertaForSequenceClassification, RobertaForMultipleChoice, RobertaForTokenClassification, RobertaForQuestionAnswering};
use rust_bert::common::config::Config;
#[test]
2020-02-19 23:46:00 +03:00
fn roberta_masked_lm() -> failure::Fallible<()> {
// Resources paths
let mut home: PathBuf = dirs::home_dir().unwrap();
home.push("rustbert");
home.push("roberta");
let config_path = &home.as_path().join("config.json");
let vocab_path = &home.as_path().join("vocab.txt");
let merges_path = &home.as_path().join("merges.txt");
let weights_path = &home.as_path().join("model.ot");
// Set-up masked LM model
let device = Device::Cpu;
let mut vs = nn::VarStore::new(device);
2020-02-21 23:38:09 +03:00
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(vocab_path.to_str().unwrap(), merges_path.to_str().unwrap(), true);
let config = BertConfig::from_file(config_path);
let roberta_model = RobertaForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
// Define input
let input = ["<pad> Looks like one thing is missing", "It\'s like comparing oranges to apples"];
let tokenized_input = tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap();
let mut tokenized_input = tokenized_input.
iter().
map(|input| input.token_ids.clone()).
map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
}).
collect::<Vec<_>>();
// Masking the token [thing] of sentence 1 and [oranges] of sentence 2
tokenized_input[0][4] = 103;
tokenized_input[1][5] = 103;
let tokenized_input = tokenized_input.
iter().
map(|input|
Tensor::of_slice(&(input))).
collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let (output, _, _) = no_grad(|| {
roberta_model
.forward_t(Some(input_tensor),
None,
None,
None,
None,
&None,
&None,
false)
});
// Print masked tokens
let index_1 = output.get(0).get(4).argmax(0, false);
let index_2 = output.get(1).get(5).argmax(0, false);
let word_1 = tokenizer.vocab().id_to_token(&index_1.int64_value(&[]));
let word_2 = tokenizer.vocab().id_to_token(&index_2.int64_value(&[]));
assert_eq!("Ġsome", word_1); // Outputs "person" : "Looks like [some] thing is missing"
assert_eq!("Ġapples", word_2);// Outputs "pear" : "It\'s like comparing [apples] to apples"
Ok(())
}
#[test]
fn roberta_for_sequence_classification() -> failure::Fallible<()> {
// Resources paths
let mut home: PathBuf = dirs::home_dir().unwrap();
home.push("rustbert");
home.push("roberta");
let config_path = &home.as_path().join("config.json");
let vocab_path = &home.as_path().join("vocab.txt");
let merges_path = &home.as_path().join("merges.txt");
// Set-up model
let device = Device::Cpu;
let vs = nn::VarStore::new(device);
2020-02-21 23:38:09 +03:00
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(vocab_path.to_str().unwrap(), merges_path.to_str().unwrap(), true);
let mut config = BertConfig::from_file(config_path);
config.num_labels = Some(42);
config.output_attentions = Some(true);
config.output_hidden_states = Some(true);
let roberta_model = RobertaForSequenceClassification::new(&vs.root(), &config);
// Define input
let input = ["Looks like one thing is missing", "It\'s like comparing oranges to apples"];
let tokenized_input = tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap();
let tokenized_input = tokenized_input.
iter().
map(|input| input.token_ids.clone()).
map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
}).
map(|input|
Tensor::of_slice(&(input))).
collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let (output, all_hidden_states, all_attentions) = no_grad(|| {
roberta_model
.forward_t(Some(input_tensor),
None,
None,
None,
None,
false)
});
assert_eq!(output.size(), &[2, 42]);
assert_eq!(config.num_hidden_layers as usize, all_hidden_states.unwrap().len());
assert_eq!(config.num_hidden_layers as usize, all_attentions.unwrap().len());
Ok(())
}
#[test]
fn roberta_for_multiple_choice() -> failure::Fallible<()> {
// Resources paths
let mut home: PathBuf = dirs::home_dir().unwrap();
home.push("rustbert");
home.push("roberta");
let config_path = &home.as_path().join("config.json");
let vocab_path = &home.as_path().join("vocab.txt");
let merges_path = &home.as_path().join("merges.txt");
// Set-up model
let device = Device::Cpu;
let vs = nn::VarStore::new(device);
2020-02-21 23:38:09 +03:00
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(vocab_path.to_str().unwrap(), merges_path.to_str().unwrap(), true);
let mut config = BertConfig::from_file(config_path);
config.output_attentions = Some(true);
config.output_hidden_states = Some(true);
let roberta_model = RobertaForMultipleChoice::new(&vs.root(), &config);
// Define input
let input = ["Looks like one thing is missing", "It\'s like comparing oranges to apples"];
let tokenized_input = tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap();
let tokenized_input = tokenized_input.
iter().
map(|input| input.token_ids.clone()).
map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
}).
map(|input|
Tensor::of_slice(&(input))).
collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device).unsqueeze(0);
// Forward pass
let (output, all_hidden_states, all_attentions) = no_grad(|| {
roberta_model
.forward_t(input_tensor,
None,
None,
None,
false)
});
assert_eq!(output.size(), &[1, 2]);
assert_eq!(config.num_hidden_layers as usize, all_hidden_states.unwrap().len());
assert_eq!(config.num_hidden_layers as usize, all_attentions.unwrap().len());
Ok(())
}
#[test]
fn roberta_for_token_classification() -> failure::Fallible<()> {
// Resources paths
let mut home: PathBuf = dirs::home_dir().unwrap();
home.push("rustbert");
home.push("roberta");
let config_path = &home.as_path().join("config.json");
let vocab_path = &home.as_path().join("vocab.txt");
let merges_path = &home.as_path().join("merges.txt");
// Set-up model
let device = Device::Cpu;
let vs = nn::VarStore::new(device);
2020-02-21 23:38:09 +03:00
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(vocab_path.to_str().unwrap(), merges_path.to_str().unwrap(), true);
let mut config = BertConfig::from_file(config_path);
config.num_labels = Some(7);
config.output_attentions = Some(true);
config.output_hidden_states = Some(true);
let roberta_model = RobertaForTokenClassification::new(&vs.root(), &config);
// Define input
let input = ["Looks like one thing is missing", "It\'s like comparing oranges to apples"];
let tokenized_input = tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap();
let tokenized_input = tokenized_input.
iter().
map(|input| input.token_ids.clone()).
map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
}).
map(|input|
Tensor::of_slice(&(input))).
collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let (output, all_hidden_states, all_attentions) = no_grad(|| {
roberta_model
.forward_t(Some(input_tensor),
None,
None,
None,
None,
false)
});
assert_eq!(output.size(), &[2, 9, 7]);
assert_eq!(config.num_hidden_layers as usize, all_hidden_states.unwrap().len());
assert_eq!(config.num_hidden_layers as usize, all_attentions.unwrap().len());
Ok(())
}
#[test]
fn roberta_for_question_answering() -> failure::Fallible<()> {
// Resources paths
let mut home: PathBuf = dirs::home_dir().unwrap();
home.push("rustbert");
home.push("roberta");
let config_path = &home.as_path().join("config.json");
let vocab_path = &home.as_path().join("vocab.txt");
let merges_path = &home.as_path().join("merges.txt");
// Set-up model
let device = Device::Cpu;
let vs = nn::VarStore::new(device);
2020-02-21 23:38:09 +03:00
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(vocab_path.to_str().unwrap(), merges_path.to_str().unwrap(), true);
let mut config = BertConfig::from_file(config_path);
config.num_labels = Some(7);
config.output_attentions = Some(true);
config.output_hidden_states = Some(true);
let roberta_model = RobertaForQuestionAnswering::new(&vs.root(), &config);
// Define input
let input = ["Looks like one thing is missing", "It\'s like comparing oranges to apples"];
let tokenized_input = tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap();
let tokenized_input = tokenized_input.
iter().
map(|input| input.token_ids.clone()).
map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
}).
map(|input|
Tensor::of_slice(&(input))).
collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let (start_scores, end_scores, all_hidden_states, all_attentions) = no_grad(|| {
roberta_model
.forward_t(Some(input_tensor),
None,
None,
None,
None,
false)
});
assert_eq!(start_scores.size(), &[2, 9]);
assert_eq!(end_scores.size(), &[2, 9]);
assert_eq!(config.num_hidden_layers as usize, all_hidden_states.unwrap().len());
assert_eq!(config.num_hidden_layers as usize, all_attentions.unwrap().len());
Ok(())
}