mirror of
https://github.com/guillaume-be/rust-bert.git
synced 2024-11-20 12:08:14 +03:00
Compare commits
10 Commits
462375a802
...
d037b0f190
Author | SHA1 | Date | |
---|---|---|---|
|
d037b0f190 | ||
|
eabebc61a8 | ||
|
3df3816219 | ||
|
8802997c5f | ||
|
e38ddaabb7 | ||
|
33b2944298 | ||
|
f99bf51f53 | ||
|
29f9a7a0ff | ||
|
b68f7dcac8 | ||
|
c3a3f39468 |
2
.github/workflows/continuous-integration.yml
vendored
2
.github/workflows/continuous-integration.yml
vendored
@ -174,7 +174,7 @@ jobs:
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- run: |
|
||||
pip install -r requirements.txt --progress-bar off
|
||||
pip install -r ./utils/requirements.txt --progress-bar off
|
||||
python ./utils/download-dependencies_distilbert.py
|
||||
|
||||
fmt:
|
||||
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -17,4 +17,6 @@ Cargo.lock
|
||||
|
||||
/target
|
||||
#**/*.rs.bk
|
||||
/resources/
|
||||
/models/
|
||||
/.venv/
|
||||
convert_model.log
|
@ -2,13 +2,18 @@
|
||||
All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
## Changed
|
||||
- (BREAKING) Upgraded to `torch` 2.2 (via `tch` 0.15.0).
|
||||
|
||||
## [0.22.0] - 2024-01-20
|
||||
## Added
|
||||
- Addition of `new_with_tokenizer` constructor for `SentenceEmbeddingsModel` allowing passing custom tokenizers for sentence embeddings pipelines.
|
||||
- Support for [Tokenizers](https://github.com/huggingface/tokenizers) in pipelines, allowing loading `tokenizer.json` and `special_token_map.json` tokenizer files.
|
||||
- (BREAKING) Most model configuration can now take an optional `kind` parameter to specify the model weight precision. If not provided, will default to full precision on CPU, or the serialized weights precision otherwise.
|
||||
|
||||
## Fixed
|
||||
- (BREAKING) Fixed the keyword extraction pipeline for n-gram sizes > 2. Add new configuration option `tokenizer_forbidden_ngram_chars` to specify characters that should be excluded from n-grams (allows filtering m-grams spanning multiple sentences).
|
||||
- (BREAKING) Fixed the keyword extraction pipeline for n-gram sizes > 2. Add new configuration option `tokenizer_forbidden_ngram_chars` to specify characters that should be excluded from n-grams (allows filtering n-grams spanning multiple sentences).
|
||||
- Improved MPS device compatibility setting the `sparse_grad` flag to false for `gather` operations
|
||||
- Updated ONNX runtime backend version to 1.15.x
|
||||
- Issue with incorrect results for QA models with a tokenizer not using segment ids
|
||||
@ -447,4 +452,4 @@ All notable changes to this project will be documented in this file. The format
|
||||
|
||||
- Tensor conversion tools from Pytorch to Libtorch format
|
||||
- DistilBERT model architecture
|
||||
- Ready-to-use `SentimentClassifier` using a DistilBERT model fine-tuned on SST2
|
||||
- Ready-to-use `SentimentClassifier` using a DistilBERT model fine-tuned on SST2
|
||||
|
60
Cargo.toml
60
Cargo.toml
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "rust-bert"
|
||||
version = "0.21.0"
|
||||
version = "0.22.0"
|
||||
authors = ["Guillaume Becquin <guillaume.becquin@gmail.com>"]
|
||||
edition = "2018"
|
||||
description = "Ready-to-use NLP pipelines and language models"
|
||||
@ -76,29 +76,63 @@ features = ["doc-only"]
|
||||
|
||||
[dependencies]
|
||||
rust_tokenizers = "8.1.1"
|
||||
tch = "0.14.0"
|
||||
tch = { version = "0.16.0", features = ["download-libtorch"] }
|
||||
serde_json = "1"
|
||||
serde = { version = "1", features = ["derive"] }
|
||||
ordered-float = "3"
|
||||
ordered-float = "4.2.0"
|
||||
uuid = { version = "1", features = ["v4"] }
|
||||
thiserror = "1"
|
||||
half = "2"
|
||||
regex = "1.6"
|
||||
|
||||
cached-path = { version = "0.6", default-features = false, optional = true }
|
||||
dirs = { version = "4", optional = true }
|
||||
dirs = { version = "5", optional = true }
|
||||
lazy_static = { version = "1", optional = true }
|
||||
ort = {version="~1.15.2", optional = true, default-features = false, features = ["half"]}
|
||||
ndarray = {version="0.15", optional = true}
|
||||
tokenizers = {version="0.13.3", optional=true, default-features = false, features = ["onig"]}
|
||||
ort = { version = "1.16.3", optional = true, default-features = false, features = [
|
||||
"half",
|
||||
] }
|
||||
ndarray = { version = "0.15", optional = true }
|
||||
tokenizers = { version = "0.19.1", optional = true, default-features = false, features = [
|
||||
"onig",
|
||||
] }
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = "1"
|
||||
csv = "1"
|
||||
criterion = "0.4"
|
||||
tokio = { version = "1.24", features = ["sync", "rt-multi-thread", "macros"] }
|
||||
torch-sys = "0.14.0"
|
||||
criterion = "0.5"
|
||||
tokio = { version = "1.35", features = ["sync", "rt-multi-thread", "macros"] }
|
||||
tempfile = "3"
|
||||
itertools = "0.10"
|
||||
tracing-subscriber = { version = "0.3", default-features = false, features = [ "env-filter", "fmt" ] }
|
||||
ort = {version="~1.15.2", features = ["load-dynamic"]}
|
||||
itertools = "0.13.0"
|
||||
tracing-subscriber = { version = "0.3", default-features = false, features = [
|
||||
"env-filter",
|
||||
"fmt",
|
||||
] }
|
||||
ort = { version = "1.16.3", features = ["load-dynamic"] }
|
||||
|
||||
[[example]]
|
||||
name = "onnx-masked-lm"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "onnx-question-answering"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "onnx-sequence-classification"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "onnx-text-generation"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "onnx-token-classification"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "onnx-translation"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "generation_gpt2_hf_tokenizers"
|
||||
required-features = ["hf-tokenizers"]
|
||||
|
434
README.md
434
README.md
@ -5,10 +5,21 @@
|
||||
[![Documentation](https://docs.rs/rust-bert/badge.svg)](https://docs.rs/rust-bert)
|
||||
![License](https://img.shields.io/crates/l/rust_bert.svg)
|
||||
|
||||
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's [Transformers library](https://github.com/huggingface/transformers), using [tch-rs](https://github.com/LaurentMazare/tch-rs) or [onnxruntime bindings](https://github.com/pykeio/ort) and pre-processing from [rust-tokenizers](https://github.com/guillaume-be/rust-tokenizers). Supports multi-threaded tokenization and GPU inference.
|
||||
This repository exposes the model base architecture, task-specific heads (see below) and [ready-to-use pipelines](#ready-to-use-pipelines). [Benchmarks](#benchmarks) are available at the end of this document.
|
||||
Rust-native state-of-the-art Natural Language Processing models and pipelines.
|
||||
Port of Hugging Face's
|
||||
[Transformers library](https://github.com/huggingface/transformers), using
|
||||
[tch-rs](https://github.com/LaurentMazare/tch-rs) or
|
||||
[onnxruntime bindings](https://github.com/pykeio/ort) and pre-processing from
|
||||
[rust-tokenizers](https://github.com/guillaume-be/rust-tokenizers). Supports
|
||||
multi-threaded tokenization and GPU inference. This repository exposes the model
|
||||
base architecture, task-specific heads (see below) and
|
||||
[ready-to-use pipelines](#ready-to-use-pipelines). [Benchmarks](#benchmarks) are
|
||||
available at the end of this document.
|
||||
|
||||
Get started with tasks including question answering, named entity recognition,
|
||||
translation, summarization, text generation, conversational agents and more in
|
||||
just a few lines of code:
|
||||
|
||||
Get started with tasks including question answering, named entity recognition, translation, summarization, text generation, conversational agents and more in just a few lines of code:
|
||||
```rust
|
||||
let qa_model = QuestionAnsweringModel::new(Default::default())?;
|
||||
|
||||
@ -19,84 +30,104 @@ Get started with tasks including question answering, named entity recognition, t
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[Answer { score: 0.9976, start: 13, end: 21, answer: "Amsterdam" }]
|
||||
```
|
||||
|
||||
The tasks currently supported include:
|
||||
- Translation
|
||||
- Summarization
|
||||
- Multi-turn dialogue
|
||||
- Zero-shot classification
|
||||
- Sentiment Analysis
|
||||
- Named Entity Recognition
|
||||
- Part of Speech tagging
|
||||
- Question-Answering
|
||||
- Language Generation
|
||||
- Masked Language Model
|
||||
- Sentence Embeddings
|
||||
- Keywords extraction
|
||||
|
||||
- Translation
|
||||
- Summarization
|
||||
- Multi-turn dialogue
|
||||
- Zero-shot classification
|
||||
- Sentiment Analysis
|
||||
- Named Entity Recognition
|
||||
- Part of Speech tagging
|
||||
- Question-Answering
|
||||
- Language Generation
|
||||
- Masked Language Model
|
||||
- Sentence Embeddings
|
||||
- Keywords extraction
|
||||
|
||||
<details>
|
||||
<summary> <b>Expand to display the supported models/tasks matrix </b> </summary>
|
||||
|
||||
| |**Sequence classification**|**Token classification**|**Question answering**|**Text Generation**|**Summarization**|**Translation**|**Masked LM**|**Sentence Embeddings**|
|
||||
:-----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:----:
|
||||
DistilBERT|✅|✅|✅| | | |✅| ✅|
|
||||
MobileBERT|✅|✅|✅| | | |✅| |
|
||||
DeBERTa|✅|✅|✅| | | |✅| |
|
||||
DeBERTa (v2)|✅|✅|✅| | | |✅| |
|
||||
FNet|✅|✅|✅| | | |✅| |
|
||||
BERT|✅|✅|✅| | | |✅| ✅|
|
||||
RoBERTa|✅|✅|✅| | | |✅| ✅|
|
||||
GPT| | | |✅ | | | | |
|
||||
GPT2| | | |✅ | | | | |
|
||||
GPT-Neo| | | |✅ | | | | |
|
||||
GPT-J| | | |✅ | | | | |
|
||||
BART|✅| | |✅ |✅| | | |
|
||||
Marian| | | | | |✅| | |
|
||||
MBart|✅| | |✅ | | | | |
|
||||
M2M100| | | |✅ | | | | |
|
||||
NLLB| | | |✅ | | | | |
|
||||
Electra | |✅| | | | |✅| |
|
||||
ALBERT |✅|✅|✅| | | |✅| ✅ |
|
||||
T5 | | | |✅ |✅|✅| | ✅ |
|
||||
LongT5 | | | |✅ |✅|| | |
|
||||
XLNet|✅|✅|✅|✅ | | |✅| |
|
||||
Reformer|✅| |✅|✅ | | |✅| |
|
||||
ProphetNet| | | |✅ |✅ | | | |
|
||||
Longformer|✅|✅|✅| | | |✅| |
|
||||
Pegasus| | | | |✅| | | |
|
||||
| | **Sequence classification** | **Token classification** | **Question answering** | **Text Generation** | **Summarization** | **Translation** | **Masked LM** | **Sentence Embeddings** |
|
||||
| :----------: | :-------------------------: | :----------------------: | :--------------------: | :-----------------: | :---------------: | :-------------: | :-----------: | :---------------------: |
|
||||
| DistilBERT | ✅ | ✅ | ✅ | | | | ✅ | ✅ |
|
||||
| MobileBERT | ✅ | ✅ | ✅ | | | | ✅ | |
|
||||
| DeBERTa | ✅ | ✅ | ✅ | | | | ✅ | |
|
||||
| DeBERTa (v2) | ✅ | ✅ | ✅ | | | | ✅ | |
|
||||
| FNet | ✅ | ✅ | ✅ | | | | ✅ | |
|
||||
| BERT | ✅ | ✅ | ✅ | | | | ✅ | ✅ |
|
||||
| RoBERTa | ✅ | ✅ | ✅ | | | | ✅ | ✅ |
|
||||
| GPT | | | | ✅ | | | | |
|
||||
| GPT2 | | | | ✅ | | | | |
|
||||
| GPT-Neo | | | | ✅ | | | | |
|
||||
| GPT-J | | | | ✅ | | | | |
|
||||
| BART | ✅ | | | ✅ | ✅ | | | |
|
||||
| Marian | | | | | | ✅ | | |
|
||||
| MBart | ✅ | | | ✅ | | | | |
|
||||
| M2M100 | | | | ✅ | | | | |
|
||||
| NLLB | | | | ✅ | | | | |
|
||||
| Electra | | ✅ | | | | | ✅ | |
|
||||
| ALBERT | ✅ | ✅ | ✅ | | | | ✅ | ✅ |
|
||||
| T5 | | | | ✅ | ✅ | ✅ | | ✅ |
|
||||
| LongT5 | | | | ✅ | ✅ | | | |
|
||||
| XLNet | ✅ | ✅ | ✅ | ✅ | | | ✅ | |
|
||||
| Reformer | ✅ | | ✅ | ✅ | | | ✅ | |
|
||||
| ProphetNet | | | | ✅ | ✅ | | | |
|
||||
| Longformer | ✅ | ✅ | ✅ | | | | ✅ | |
|
||||
| Pegasus | | | | | ✅ | | | |
|
||||
|
||||
</details>
|
||||
|
||||
## Getting started
|
||||
|
||||
This library relies on the [tch](https://github.com/LaurentMazare/tch-rs) crate for bindings to the C++ Libtorch API.
|
||||
The libtorch library is required can be downloaded either automatically or manually. The following provides a reference on how to set-up your environment
|
||||
to use these bindings, please refer to the [tch](https://github.com/LaurentMazare/tch-rs) for detailed information or support.
|
||||
This library relies on the [tch](https://github.com/LaurentMazare/tch-rs) crate
|
||||
for bindings to the C++ Libtorch API. The libtorch library is required can be
|
||||
downloaded either automatically or manually. The following provides a reference
|
||||
on how to set-up your environment to use these bindings, please refer to the
|
||||
[tch](https://github.com/LaurentMazare/tch-rs) for detailed information or
|
||||
support.
|
||||
|
||||
Furthermore, this library relies on a cache folder for downloading pre-trained models.
|
||||
This cache location defaults to `~/.cache/.rustbert`, but can be changed by setting the `RUSTBERT_CACHE` environment variable. Note that the language models used by this library are in the order of the 100s of MBs to GBs.
|
||||
Furthermore, this library relies on a cache folder for downloading pre-trained
|
||||
models. This cache location defaults to `~/.cache/.rustbert`, but can be changed
|
||||
by setting the `RUSTBERT_CACHE` environment variable. Note that the language
|
||||
models used by this library are in the order of the 100s of MBs to GBs.
|
||||
|
||||
### Manual installation (recommended)
|
||||
|
||||
1. Download `libtorch` from https://pytorch.org/get-started/locally/. This package requires `v2.1`: if this version is no longer available on the "get started" page,
|
||||
the file should be accessible by modifying the target link, for example `https://download.pytorch.org/libtorch/cu118/libtorch-cxx11-abi-shared-with-deps-2.1.1%2Bcu118.zip` for a Linux version with CUDA11. **NOTE:** When using `rust-bert` as dependency from [crates.io](https://crates.io), please check the required `LIBTORCH` on the published package [readme](https://crates.io/crates/rust-bert) as it may differ from the version documented here (applying to the current repository version).
|
||||
1. Download `libtorch` from https://pytorch.org/get-started/locally/. This
|
||||
package requires `v2.2`: if this version is no longer available on the "get
|
||||
started" page, the file should be accessible by modifying the target link,
|
||||
for example
|
||||
`https://download.pytorch.org/libtorch/cu121/libtorch-cxx11-abi-shared-with-deps-2.2.0%2Bcu121.zip`
|
||||
for a Linux version with CUDA12. **NOTE:** When using `rust-bert` as
|
||||
dependency from [crates.io](https://crates.io), please check the required
|
||||
`LIBTORCH` on the published package
|
||||
[readme](https://crates.io/crates/rust-bert) as it may differ from the
|
||||
version documented here (applying to the current repository version).
|
||||
2. Extract the library to a location of your choice
|
||||
3. Set the following environment variables
|
||||
|
||||
##### Linux:
|
||||
|
||||
```bash
|
||||
export LIBTORCH=/path/to/libtorch
|
||||
export LD_LIBRARY_PATH=${LIBTORCH}/lib:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
##### Windows
|
||||
|
||||
```powershell
|
||||
$Env:LIBTORCH = "X:\path\to\libtorch"
|
||||
$Env:Path += ";X:\path\to\libtorch\lib"
|
||||
```
|
||||
|
||||
#### macOS + Homebrew
|
||||
|
||||
```bash
|
||||
brew install pytorch jq
|
||||
export LIBTORCH=$(brew --cellar pytorch)/$(brew info --json pytorch | jq -r '.[0].installed[0].version')
|
||||
@ -105,13 +136,19 @@ export LD_LIBRARY_PATH=${LIBTORCH}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
### Automatic installation
|
||||
|
||||
Alternatively, you can let the `build` script automatically download the `libtorch` library for you. The `download-libtorch` feature flag needs to be enabled.
|
||||
The CPU version of libtorch will be downloaded by default. To download a CUDA version, please set the environment variable `TORCH_CUDA_VERSION` to `cu118`.
|
||||
Note that the libtorch library is large (order of several GBs for the CUDA-enabled version) and the first build may therefore take several minutes to complete.
|
||||
Alternatively, you can let the `build` script automatically download the
|
||||
`libtorch` library for you. The `download-libtorch` feature flag needs to be
|
||||
enabled. The CPU version of libtorch will be downloaded by default. To download
|
||||
a CUDA version, please set the environment variable `TORCH_CUDA_VERSION` to
|
||||
`cu118`. Note that the libtorch library is large (order of several GBs for the
|
||||
CUDA-enabled version) and the first build may therefore take several minutes to
|
||||
complete.
|
||||
|
||||
### Verifying installation
|
||||
|
||||
Verify your installation (and linking with libtorch) by adding the `rust-bert` dependency to your `Cargo.toml` or by cloning the rust-bert source and running an example:
|
||||
Verify your installation (and linking with libtorch) by adding the `rust-bert`
|
||||
dependency to your `Cargo.toml` or by cloning the rust-bert source and running
|
||||
an example:
|
||||
|
||||
```bash
|
||||
git clone git@github.com:guillaume-be/rust-bert.git
|
||||
@ -121,41 +158,73 @@ cargo run --example sentence_embeddings
|
||||
|
||||
## ONNX Support (Optional)
|
||||
|
||||
ONNX support can be enabled via the optional `onnx` feature. This crate then leverages the [ort](https://github.com/pykeio/ort) crate with bindings to the onnxruntime C++ library. We refer the user to this page project for further installation instructions/support.
|
||||
1. Enable the optional `onnx` feature. The `rust-bert` crate does not include any optional dependencies for `ort`, the end user should select the set of features that would be adequate for pulling the required `onnxruntime` C++ library.
|
||||
2. The current recommended installation is to use dynamic linking by pointing to an existing library location. Use the `load-dynamic` cargo feature for `ort`.
|
||||
3. set the `ORT_DYLIB_PATH` to point to the location of downloaded onnxruntime library (`onnxruntime.dll`/`libonnxruntime.so`/`libonnxruntime.dylib` depending on the operating system). These can be downloaded from the [release page](https://github.com/microsoft/onnxruntime/releases) of the onnxruntime project
|
||||
ONNX support can be enabled via the optional `onnx` feature. This crate then
|
||||
leverages the [ort](https://github.com/pykeio/ort) crate with bindings to the
|
||||
onnxruntime C++ library. We refer the user to this page project for further
|
||||
installation instructions/support.
|
||||
|
||||
Most architectures (including encoders, decoders and encoder-decoders) are supported. the library aims at keeping compatibility with models exported using the [optimum](https://github.com/huggingface/optimum) library. A detailed guide on how to export a Transformer model to ONNX using optimum is available at https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model
|
||||
The resources used to create ONNX models are similar to those based on Pytorch, replacing the pytorch by the ONNX model. Since ONNX models are less flexible than their Pytorch counterparts in the handling of optional arguments, exporting a decoder or encoder-decoder model to ONNX will usually result in multiple files. These files are expected (but not all are necessary) for use in this library as per the table below:
|
||||
1. Enable the optional `onnx` feature. The `rust-bert` crate does not include
|
||||
any optional dependencies for `ort`, the end user should select the set of
|
||||
features that would be adequate for pulling the required `onnxruntime` C++
|
||||
library.
|
||||
2. The current recommended installation is to use dynamic linking by pointing to
|
||||
an existing library location. Use the `load-dynamic` cargo feature for `ort`.
|
||||
3. set the `ORT_DYLIB_PATH` to point to the location of downloaded onnxruntime
|
||||
library (`onnxruntime.dll`/`libonnxruntime.so`/`libonnxruntime.dylib`
|
||||
depending on the operating system). These can be downloaded from the
|
||||
[release page](https://github.com/microsoft/onnxruntime/releases) of the
|
||||
onnxruntime project
|
||||
|
||||
| Architecture | Encoder file | Decoder without past file | Decoder with past file |
|
||||
|-----------------------------|---------------|---------------------------|-------------------------|
|
||||
| Encoder (e.g. BERT) | required | not used | not used |
|
||||
| Decoder (e.g. GPT2) | not used | required | optional |
|
||||
| Encoder-decoder (e.g. BART) | required | required | optional |
|
||||
Most architectures (including encoders, decoders and encoder-decoders) are
|
||||
supported. the library aims at keeping compatibility with models exported using
|
||||
the [optimum](https://github.com/huggingface/optimum) library. A detailed guide
|
||||
on how to export a Transformer model to ONNX using optimum is available at
|
||||
https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model
|
||||
The resources used to create ONNX models are similar to those based on Pytorch,
|
||||
replacing the pytorch by the ONNX model. Since ONNX models are less flexible
|
||||
than their Pytorch counterparts in the handling of optional arguments, exporting
|
||||
a decoder or encoder-decoder model to ONNX will usually result in multiple
|
||||
files. These files are expected (but not all are necessary) for use in this
|
||||
library as per the table below:
|
||||
|
||||
Note that the computational efficiency will drop when the `decoder with past` file is optional but not provided
|
||||
since the model will not used cached past keys and values for the attention mechanism, leading to a high number of
|
||||
redundant computations. The Optimum library offers export options to ensure such a `decoder with past` model file is created.
|
||||
he base encoder and decoder model architecture are available (and exposed for convenience) in the `encoder` and `decoder` modules, respectively.
|
||||
| Architecture | Encoder file | Decoder without past file | Decoder with past file |
|
||||
| --------------------------- | ------------ | ------------------------- | ---------------------- |
|
||||
| Encoder (e.g. BERT) | required | not used | not used |
|
||||
| Decoder (e.g. GPT2) | not used | required | optional |
|
||||
| Encoder-decoder (e.g. BART) | required | required | optional |
|
||||
|
||||
Generation models (pure decoder or encoder/decoder architectures) are available in the `models` module.
|
||||
ost pipelines are available for ONNX model checkpoints, including sequence classification, zero-shot classification,
|
||||
token classification (including named entity recognition and part-of-speech tagging), question answering, text generation, summarization and translation.
|
||||
These models use the same configuration and tokenizer files as their Pytorch counterparts when used in a pipeline. Examples leveraging ONNX models are given in the `./examples` directory
|
||||
Note that the computational efficiency will drop when the `decoder with past`
|
||||
file is optional but not provided since the model will not used cached past keys
|
||||
and values for the attention mechanism, leading to a high number of redundant
|
||||
computations. The Optimum library offers export options to ensure such a
|
||||
`decoder with past` model file is created. he base encoder and decoder model
|
||||
architecture are available (and exposed for convenience) in the `encoder` and
|
||||
`decoder` modules, respectively.
|
||||
|
||||
Generation models (pure decoder or encoder/decoder architectures) are available
|
||||
in the `models` module. ost pipelines are available for ONNX model checkpoints,
|
||||
including sequence classification, zero-shot classification, token
|
||||
classification (including named entity recognition and part-of-speech tagging),
|
||||
question answering, text generation, summarization and translation. These models
|
||||
use the same configuration and tokenizer files as their Pytorch counterparts
|
||||
when used in a pipeline. Examples leveraging ONNX models are given in the
|
||||
`./examples` directory
|
||||
|
||||
## Ready-to-use pipelines
|
||||
|
||||
Based on Hugging Face's pipelines, ready to use end-to-end NLP pipelines are available as part of this crate. The following capabilities are currently available:
|
||||
|
||||
**Disclaimer**
|
||||
The contributors of this repository are not responsible for any generation from the 3rd party utilization of the pretrained systems proposed herein.
|
||||
Based on Hugging Face's pipelines, ready to use end-to-end NLP pipelines are
|
||||
available as part of this crate. The following capabilities are currently
|
||||
available:
|
||||
|
||||
**Disclaimer** The contributors of this repository are not responsible for any
|
||||
generation from the 3rd party utilization of the pretrained systems proposed
|
||||
herein.
|
||||
|
||||
<details>
|
||||
<summary> <b>1. Question Answering</b> </summary>
|
||||
|
||||
Extractive question answering from a given question and context. DistilBERT model fine-tuned on SQuAD (Stanford Question Answering Dataset)
|
||||
Extractive question answering from a given question and context. DistilBERT
|
||||
model fine-tuned on SQuAD (Stanford Question Answering Dataset)
|
||||
|
||||
```rust
|
||||
let qa_model = QuestionAnsweringModel::new(Default::default())?;
|
||||
@ -167,20 +236,27 @@ Extractive question answering from a given question and context. DistilBERT mode
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[Answer { score: 0.9976, start: 13, end: 21, answer: "Amsterdam" }]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>2. Translation </b> </summary>
|
||||
|
||||
Translation pipeline supporting a broad range of source and target languages. Leverages two main architectures for translation tasks:
|
||||
- Marian-based models, for specific source/target combinations
|
||||
- M2M100 models allowing for direct translation between 100 languages (at a higher computational cost and lower performance for some selected languages)
|
||||
Translation pipeline supporting a broad range of source and target languages.
|
||||
Leverages two main architectures for translation tasks:
|
||||
|
||||
- Marian-based models, for specific source/target combinations
|
||||
- M2M100 models allowing for direct translation between 100 languages (at a
|
||||
higher computational cost and lower performance for some selected languages)
|
||||
|
||||
Marian-based pretrained models for the following language pairs are readily
|
||||
available in the library - but the user can import any Pytorch-based model for
|
||||
predictions
|
||||
|
||||
Marian-based pretrained models for the following language pairs are readily available in the library - but the user can import any Pytorch-based
|
||||
model for predictions
|
||||
- English <-> French
|
||||
- English <-> Spanish
|
||||
- English <-> Portuguese
|
||||
@ -196,30 +272,36 @@ model for predictions
|
||||
- English <-> Hindi
|
||||
- French <-> German
|
||||
|
||||
For languages not supported by the proposed pretrained Marian models, the user can leverage a M2M100 model supporting direct translation between 100 languages (without intermediate English translation)
|
||||
The full list of supported languages is available in the [crate documentation](https://docs.rs/rust-bert/latest/rust_bert/pipelines/translation/enum.Language.html)
|
||||
For languages not supported by the proposed pretrained Marian models, the user
|
||||
can leverage a M2M100 model supporting direct translation between 100 languages
|
||||
(without intermediate English translation) The full list of supported languages
|
||||
is available in the
|
||||
[crate documentation](https://docs.rs/rust-bert/latest/rust_bert/pipelines/translation/enum.Language.html)
|
||||
|
||||
```rust
|
||||
use rust_bert::pipelines::translation::{Language, TranslationModelBuilder};
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let model = TranslationModelBuilder::new()
|
||||
.with_source_languages(vec![Language::English])
|
||||
.with_target_languages(vec![Language::Spanish, Language::French, Language::Italian])
|
||||
.create_model()?;
|
||||
let input_text = "This is a sentence to be translated";
|
||||
let output = model.translate(&[input_text], None, Language::French)?;
|
||||
for sentence in output {
|
||||
println!("{}", sentence);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
```rust
|
||||
use rust_bert::pipelines::translation::{Language, TranslationModelBuilder};
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let model = TranslationModelBuilder::new()
|
||||
.with_source_languages(vec![Language::English])
|
||||
.with_target_languages(vec![Language::Spanish, Language::French, Language::Italian])
|
||||
.create_model()?;
|
||||
let input_text = "This is a sentence to be translated";
|
||||
let output = model.translate(&[input_text], None, Language::Spanish)?;
|
||||
for sentence in output {
|
||||
println!("{}", sentence);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
Output:
|
||||
|
||||
```
|
||||
Il s'agit d'une phrase à traduire
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>3. Summarization </b> </summary>
|
||||
|
||||
@ -252,26 +334,35 @@ about exoplanets like K2-18b."];
|
||||
|
||||
let output = summarization_model.summarize(&input);
|
||||
```
|
||||
(example from: [WikiNews](https://en.wikinews.org/wiki/Astronomers_find_water_vapour_in_atmosphere_of_exoplanet_K2-18b))
|
||||
|
||||
(example from:
|
||||
[WikiNews](https://en.wikinews.org/wiki/Astronomers_find_water_vapour_in_atmosphere_of_exoplanet_K2-18b))
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
"Scientists have found water vapour on K2-18b, a planet 110 light-years from Earth.
|
||||
This is the first such discovery in a planet in its star's habitable zone.
|
||||
The planet is not too hot and not too cold for liquid water to exist."
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>4. Dialogue Model </b> </summary>
|
||||
|
||||
Conversation model based on Microsoft's [DialoGPT](https://github.com/microsoft/DialoGPT).
|
||||
This pipeline allows the generation of single or multi-turn conversations between a human and a model.
|
||||
Conversation model based on Microsoft's
|
||||
[DialoGPT](https://github.com/microsoft/DialoGPT). This pipeline allows the
|
||||
generation of single or multi-turn conversations between a human and a model.
|
||||
The DialoGPT's page states that
|
||||
> The human evaluation results indicate that the response generated from DialoGPT is comparable to human response quality
|
||||
> under a single-turn conversation Turing test. ([DialoGPT repository](https://github.com/microsoft/DialoGPT))
|
||||
|
||||
The model uses a `ConversationManager` to keep track of active conversations and generate responses to them.
|
||||
> The human evaluation results indicate that the response generated from
|
||||
> DialoGPT is comparable to human response quality under a single-turn
|
||||
> conversation Turing test.
|
||||
> ([DialoGPT repository](https://github.com/microsoft/DialoGPT))
|
||||
|
||||
The model uses a `ConversationManager` to keep track of active conversations and
|
||||
generate responses to them.
|
||||
|
||||
```rust
|
||||
use rust_bert::pipelines::conversation::{ConversationModel, ConversationManager};
|
||||
@ -282,19 +373,24 @@ let mut conversation_manager = ConversationManager::new();
|
||||
let conversation_id = conversation_manager.create("Going to the movies tonight - any suggestions?");
|
||||
let output = conversation_model.generate_responses(&mut conversation_manager);
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
"The Big Lebowski."
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>5. Natural Language Generation </b> </summary>
|
||||
|
||||
Generate language based on a prompt. GPT2 and GPT available as base models.
|
||||
Include techniques such as beam search, top-k and nucleus sampling, temperature setting and repetition penalty.
|
||||
Supports batch generation of sentences from several prompts. Sequences will be left-padded with the model's padding token if present, the unknown token otherwise.
|
||||
This may impact the results, it is recommended to submit prompts of similar length for best results
|
||||
Include techniques such as beam search, top-k and nucleus sampling, temperature
|
||||
setting and repetition penalty. Supports batch generation of sentences from
|
||||
several prompts. Sequences will be left-padded with the model's padding token if
|
||||
present, the unknown token otherwise. This may impact the results, it is
|
||||
recommended to submit prompts of similar length for best results
|
||||
|
||||
```rust
|
||||
let model = GPT2Generator::new(Default::default())?;
|
||||
@ -309,7 +405,9 @@ This may impact the results, it is recommended to submit prompts of similar leng
|
||||
|
||||
let output = model.generate(Some(&[input_context_1, input_context_2]), generate_options);
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
[
|
||||
"The dog's owners, however, did not want to be named. According to the lawsuit, the animal's owner, a 29-year"
|
||||
@ -320,12 +418,15 @@ Example output:
|
||||
"The cat was attacked by two stray dogs and was taken to a hospital. Two other cats were also injured in the attack and are being treated."
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>6. Zero-shot classification </b> </summary>
|
||||
|
||||
Performs zero-shot classification on input sentences with provided labels using a model fine-tuned for Natural Language Inference.
|
||||
Performs zero-shot classification on input sentences with provided labels using
|
||||
a model fine-tuned for Natural Language Inference.
|
||||
|
||||
```rust
|
||||
let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?;
|
||||
|
||||
@ -342,18 +443,22 @@ Performs zero-shot classification on input sentences with provided labels using
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
[ Label { "politics", score: 0.972 }, Label { "public health", score: 0.032 }, Label {"economics", score: 0.006 }, Label {"sports", score: 0.004 } ],
|
||||
[ Label { "politics", score: 0.975 }, Label { "public health", score: 0.0818 }, Label {"economics", score: 0.852 }, Label {"sports", score: 0.001 } ],
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>7. Sentiment analysis </b> </summary>
|
||||
|
||||
Predicts the binary sentiment for a sentence. DistilBERT model fine-tuned on SST-2.
|
||||
Predicts the binary sentiment for a sentence. DistilBERT model fine-tuned on
|
||||
SST-2.
|
||||
|
||||
```rust
|
||||
let sentiment_classifier = SentimentModel::new(Default::default())?;
|
||||
|
||||
@ -365,9 +470,11 @@ Predicts the binary sentiment for a sentence. DistilBERT model fine-tuned on SST
|
||||
|
||||
let output = sentiment_classifier.predict(&input);
|
||||
```
|
||||
|
||||
(Example courtesy of [IMDb](http://www.imdb.com))
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
Sentiment { polarity: Positive, score: 0.9981985493795946 },
|
||||
@ -375,13 +482,17 @@ Output:
|
||||
Sentiment { polarity: Positive, score: 0.9997248985164333 }
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>8. Named Entity Recognition </b> </summary>
|
||||
|
||||
Extracts entities (Person, Location, Organization, Miscellaneous) from text. BERT cased large model fine-tuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz).
|
||||
Extracts entities (Person, Location, Organization, Miscellaneous) from text.
|
||||
BERT cased large model fine-tuned on CoNNL03, contributed by the
|
||||
[MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz).
|
||||
Models are currently available for English, German, Spanish and Dutch.
|
||||
|
||||
```rust
|
||||
let ner_model = NERModel::new(default::default())?;
|
||||
|
||||
@ -392,7 +503,9 @@ Models are currently available for English, German, Spanish and Dutch.
|
||||
|
||||
let output = ner_model.predict(&input);
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
[
|
||||
@ -405,8 +518,9 @@ Output:
|
||||
]
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>9. Keywords/keyphrases extraction</b> </summary>
|
||||
|
||||
@ -427,7 +541,9 @@ fn main() -> anyhow::Result<()> {
|
||||
let output = keyword_extraction_model.predict(&[input])?;
|
||||
}
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
"rust" - 0.50910604
|
||||
"programming" - 0.35731024
|
||||
@ -435,12 +551,14 @@ Output:
|
||||
"concurrent" - 0.31229728
|
||||
"program" - 0.29115444
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>10. Part of Speech tagging </b> </summary>
|
||||
|
||||
Extracts Part of Speech tags (Noun, Verb, Adjective...) from text.
|
||||
|
||||
```rust
|
||||
let pos_model = POSModel::new(default::default())?;
|
||||
|
||||
@ -448,7 +566,9 @@ Extracts Part of Speech tags (Noun, Verb, Adjective...) from text.
|
||||
|
||||
let output = pos_model.predict(&input);
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
Entity { word: "My", score: 0.1560, label: "PRP" }
|
||||
@ -457,12 +577,15 @@ Output:
|
||||
Entity { word: "Bob", score: 0.7460, label: "NNP" }
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>11. Sentence embeddings </b> </summary>
|
||||
|
||||
Generate sentence embeddings (vector representation). These can be used for applications including dense information retrieval.
|
||||
Generate sentence embeddings (vector representation). These can be used for
|
||||
applications including dense information retrieval.
|
||||
|
||||
```rust
|
||||
let model = SentenceEmbeddingsBuilder::remote(
|
||||
SentenceEmbeddingsModelType::AllMiniLmL12V2
|
||||
@ -475,19 +598,23 @@ Generate sentence embeddings (vector representation). These can be used for appl
|
||||
|
||||
let output = model.encode(&sentences)?;
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
[-0.000202666, 0.08148022, 0.03136178, 0.002920636 ...],
|
||||
[0.064757116, 0.048519745, -0.01786038, -0.0479775 ...]
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> <b>12. Masked Language Model </b> </summary>
|
||||
|
||||
Predict masked words in input sentences.
|
||||
|
||||
```rust
|
||||
let model = MaskedLanguageModel::new(Default::default())?;
|
||||
|
||||
@ -498,7 +625,9 @@ Predict masked words in input sentences.
|
||||
|
||||
let output = model.predict(&sentences);
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
[
|
||||
[MaskedToken { text: "college", id: 2267, score: 8.091}],
|
||||
@ -508,29 +637,61 @@ Output:
|
||||
]
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Benchmarks
|
||||
|
||||
For simple pipelines (sequence classification, tokens classification, question answering) the performance between Python and Rust is expected to be comparable. This is because the most expensive part of these pipeline is the language model itself, sharing a common implementation in the Torch backend. The [End-to-end NLP Pipelines in Rust](https://www.aclweb.org/anthology/2020.nlposs-1.4/) provides a benchmarks section covering all pipelines.
|
||||
For simple pipelines (sequence classification, tokens classification, question
|
||||
answering) the performance between Python and Rust is expected to be comparable.
|
||||
This is because the most expensive part of these pipeline is the language model
|
||||
itself, sharing a common implementation in the Torch backend. The
|
||||
[End-to-end NLP Pipelines in Rust](https://www.aclweb.org/anthology/2020.nlposs-1.4/)
|
||||
provides a benchmarks section covering all pipelines.
|
||||
|
||||
For text generation tasks (summarization, translation, conversation, free text generation), significant benefits can be expected (up to 2 to 4 times faster processing depending on the input and application). The article [Accelerating text generation with Rust](https://guillaume-be.github.io/2020-11-21/generation_benchmarks) focuses on these text generation applications and provides more details on the performance comparison to Python.
|
||||
For text generation tasks (summarization, translation, conversation, free text
|
||||
generation), significant benefits can be expected (up to 2 to 4 times faster
|
||||
processing depending on the input and application). The article
|
||||
[Accelerating text generation with Rust](https://guillaume-be.github.io/2020-11-21/generation_benchmarks)
|
||||
focuses on these text generation applications and provides more details on the
|
||||
performance comparison to Python.
|
||||
|
||||
## Loading pretrained and custom model weights
|
||||
|
||||
The base model and task-specific heads are also available for users looking to expose their own transformer based models.
|
||||
Examples on how to prepare the date using a native tokenizers Rust library are available in `./examples` for BERT, DistilBERT, RoBERTa, GPT, GPT2 and BART.
|
||||
Note that when importing models from Pytorch, the convention for parameters naming needs to be aligned with the Rust schema. Loading of the pre-trained weights will fail if any of the model parameters weights cannot be found in the weight files.
|
||||
If this quality check is to be skipped, an alternative method `load_partial` can be invoked from the variables store.
|
||||
The base model and task-specific heads are also available for users looking to
|
||||
expose their own transformer based models. Examples on how to prepare the date
|
||||
using a native tokenizers Rust library are available in `./examples` for BERT,
|
||||
DistilBERT, RoBERTa, GPT, GPT2 and BART. Note that when importing models from
|
||||
Pytorch, the convention for parameters naming needs to be aligned with the Rust
|
||||
schema. Loading of the pre-trained weights will fail if any of the model
|
||||
parameters weights cannot be found in the weight files. If this quality check is
|
||||
to be skipped, an alternative method `load_partial` can be invoked from the
|
||||
variables store.
|
||||
|
||||
Pretrained models are available on Hugging face's [model hub](https://huggingface.co/models?filter=rust) and can be loaded using `RemoteResources` defined in this library.
|
||||
A conversion utility script is included in `./utils` to convert Pytorch weights to a set of weights compatible with this library. This script requires Python and `torch` to be set-up, and can be used as follows:
|
||||
`python ./utils/convert_model.py path/to/pytorch_model.bin` where `path/to/pytorch_model.bin` is the location of the original Pytorch weights.
|
||||
Pretrained models are available on Hugging face's
|
||||
[model hub](https://huggingface.co/models?filter=rust) and can be loaded using
|
||||
`RemoteResources` defined in this library.
|
||||
|
||||
A conversion utility script is included in `./utils` to convert Pytorch weights
|
||||
to a set of weights compatible with this library. This script requires Python
|
||||
and `torch` to be set-up, and can be used as follows:
|
||||
`python ./utils/convert_model.py path/to/pytorch_model.bin` where
|
||||
`path/to/pytorch_model.bin` is the location of the original Pytorch weights.
|
||||
|
||||
```bash
|
||||
python3 -m venv .venv
|
||||
source .venv/bin/activate
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
python utils/convert_model.py path/to/pytorch_model.bin
|
||||
```
|
||||
|
||||
## Citation
|
||||
|
||||
If you use `rust-bert` for your work, please cite [End-to-end NLP Pipelines in Rust](https://www.aclweb.org/anthology/2020.nlposs-1.4/):
|
||||
If you use `rust-bert` for your work, please cite
|
||||
[End-to-end NLP Pipelines in Rust](https://www.aclweb.org/anthology/2020.nlposs-1.4/):
|
||||
|
||||
```bibtex
|
||||
@inproceedings{becquin-2020-end,
|
||||
title = "End-to-end {NLP} Pipelines in Rust",
|
||||
@ -545,6 +706,7 @@ If you use `rust-bert` for your work, please cite [End-to-end NLP Pipelines in R
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
Thank you to [Hugging Face](https://huggingface.co) for hosting a set of weights compatible with this Rust library.
|
||||
The list of ready-to-use pretrained models is listed at [https://huggingface.co/models?filter=rust](https://huggingface.co/models?filter=rust).
|
||||
|
||||
Thank you to [Hugging Face](https://huggingface.co) for hosting a set of weights
|
||||
compatible with this Rust library. The list of ready-to-use pretrained models is
|
||||
listed at
|
||||
[https://huggingface.co/models?filter=rust](https://huggingface.co/models?filter=rust).
|
||||
|
@ -53,10 +53,6 @@ fn generation_forward_pass(iters: u64, model: &TextGenerationModel, data: &[&str
|
||||
}
|
||||
|
||||
fn bench_generation(c: &mut Criterion) {
|
||||
// Set-up summarization model
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
let model = create_text_generation_model();
|
||||
|
||||
// Define input
|
||||
|
@ -73,9 +73,7 @@ fn qa_load_model(iters: u64) -> Duration {
|
||||
fn bench_squad(c: &mut Criterion) {
|
||||
// Set-up QA model
|
||||
let model = create_qa_model();
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
|
||||
// Define input
|
||||
let mut squad_path = PathBuf::from(env::var("squad_dataset")
|
||||
.expect("Please set the \"squad_dataset\" environment variable pointing to the SQuAD dataset folder"));
|
||||
|
@ -79,9 +79,7 @@ fn sst2_load_model(iters: u64) -> Duration {
|
||||
fn bench_sst2(c: &mut Criterion) {
|
||||
// Set-up classifier
|
||||
let model = create_sentiment_model();
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
|
||||
// Define input
|
||||
let mut sst2_path = PathBuf::from(env::var("SST2_PATH").expect(
|
||||
"Please set the \"SST2_PATH\" environment variable pointing to the SST2 dataset folder",
|
||||
|
@ -40,9 +40,6 @@ fn summarization_load_model(iters: u64) -> Duration {
|
||||
|
||||
fn bench_squad(c: &mut Criterion) {
|
||||
// Set-up summarization model
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
let model = create_summarization_model();
|
||||
|
||||
// Define input
|
||||
|
@ -17,10 +17,6 @@ fn matrix_multiply(iters: u64, input: &Tensor, weights: &Tensor) -> Duration {
|
||||
}
|
||||
|
||||
fn bench_tensor_ops(c: &mut Criterion) {
|
||||
// Set-up summarization model
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
let input = Tensor::rand([32, 128, 512], (Kind::Float, Device::cuda_if_available()));
|
||||
let weights = Tensor::rand([512, 512], (Kind::Float, Device::cuda_if_available()));
|
||||
|
||||
|
@ -14,9 +14,6 @@ fn create_model() -> TokenClassificationModel {
|
||||
|
||||
fn bench_token_classification_predict(c: &mut Criterion) {
|
||||
// Set-up model
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
let model = create_model();
|
||||
|
||||
// Define input
|
||||
|
@ -73,9 +73,6 @@ fn translation_load_model(iters: u64) -> Duration {
|
||||
|
||||
fn bench_squad(c: &mut Criterion) {
|
||||
// Set-up translation model
|
||||
unsafe {
|
||||
torch_sys::dummy_cuda_dependency();
|
||||
}
|
||||
let model = create_translation_model();
|
||||
|
||||
// Define input
|
||||
|
@ -1,3 +0,0 @@
|
||||
torch == 1.13.1
|
||||
requests == 2.31.0
|
||||
numpy == 1.23.4
|
@ -90,8 +90,8 @@
|
||||
//!
|
||||
//! ### Manual installation (recommended)
|
||||
//!
|
||||
//! 1. Download `libtorch` from <https://pytorch.org/get-started/locally/>. This package requires `v2.1`: if this version is no longer available on the "get started" page,
|
||||
//! the file should be accessible by modifying the target link, for example `https://download.pytorch.org/libtorch/cu118/libtorch-cxx11-abi-shared-with-deps-2.1.1%2Bcu118.zip` for a Linux version with CUDA11.
|
||||
//! 1. Download `libtorch` from <https://pytorch.org/get-started/locally/>. This package requires `v2.2`: if this version is no longer available on the "get started" page,
|
||||
//! the file should be accessible by modifying the target link, for example `https://download.pytorch.org/libtorch/cu121/libtorch-cxx11-abi-shared-with-deps-2.2.0%2Bcu121.zip` for a Linux version with CUDA12.
|
||||
//! 2. Extract the library to a location of your choice
|
||||
//! 3. Set the following environment variables
|
||||
//! ##### Linux:
|
||||
|
@ -16,6 +16,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `BertTokenizer` using a `vocab.txt` vocabulary
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -369,7 +369,7 @@ fn _shift_tokens_right(input_ids: &Tensor, pad_token_id: i64) -> Tensor {
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `BartEncoder` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `BartDecoder` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `pad_token_id`: padding token id
|
||||
pub struct BartModel {
|
||||
pub(crate) encoder: BartEncoder,
|
||||
@ -437,7 +437,7 @@ impl BartModel {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
///
|
||||
@ -597,7 +597,7 @@ impl BartForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
@ -798,7 +798,7 @@ impl BartForSequenceClassification {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -340,6 +340,7 @@ impl BartDecoder {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
///Container holding a BART decoder output
|
||||
pub struct BartDecoderOutput {
|
||||
/// last decoder layer hidden state
|
||||
|
@ -11,6 +11,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `RobertaTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -16,6 +16,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `BertTokenizer` using a `vocab.txt` vocabulary
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -12,6 +12,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `DebertaTokenizer` using a `vocab.json` vocabulary and `merges.txt` merges file
|
||||
//!
|
||||
//! Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -12,6 +12,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `DebertaV2Tokenizer` using a `spiece.model` SentencePiece model file
|
||||
//!
|
||||
//! Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -14,6 +14,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `BertTokenizer` using a `vocab.txt` vocabulary
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -19,6 +19,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `BertTokenizer` using a `vocab.txt` vocabulary
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -14,6 +14,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `FNetTokenizer` using a `spiece.model` SentencePiece (BPE) model file
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -11,6 +11,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `Gpt2Tokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -174,7 +174,7 @@ impl From<&LongT5Config> for T5Config {
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `T5Stack` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `T5Stack` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `embeddings`: `nn::Embedding` Shared embeddings for the encoder and decoder.
|
||||
pub struct LongT5Model {
|
||||
pub(crate) encoder: LongT5Stack,
|
||||
@ -248,7 +248,7 @@ impl LongT5Model {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). This or `input_embeds` must be provided.
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). This or `decoder_input_embeds` must be provided.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `input_embeds` - Optional input tensor of shape (*batch size*, *source_sequence_length*, *embeddings dimension*). This or `input_ids` must be provided.
|
||||
@ -436,7 +436,7 @@ impl LongT5ForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). This or `input_embeds` must be provided.
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). This or `decoder_input_embeds` must be provided.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `input_embeds` - Optional input tensor of shape (*batch size*, *source_sequence_length*, *embeddings dimension*). This or `input_ids` must be provided.
|
||||
|
@ -126,7 +126,7 @@ fn _shift_tokens_right(
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `M2M100Encoder` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `M2M100Decoder` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `pad_token_id`: padding token id
|
||||
pub struct M2M100Model {
|
||||
pub(crate) encoder: M2M100Encoder,
|
||||
@ -197,7 +197,7 @@ impl M2M100Model {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
///
|
||||
@ -365,7 +365,7 @@ impl M2M100ForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -12,6 +12,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `M2M100Tokenizer` using a `config.json` vocabulary and a `spiece.model` SentencePiece BPE model
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -579,7 +579,7 @@ impl MarianForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -229,7 +229,7 @@ impl MBartClassificationHead {
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `MBartEncoder` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `MBartDecoder` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `pad_token_id`: padding token id
|
||||
pub struct MBartModel {
|
||||
pub(crate) encoder: MBartEncoder,
|
||||
@ -297,7 +297,7 @@ impl MBartModel {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
///
|
||||
@ -470,7 +470,7 @@ impl MBartForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
@ -621,7 +621,7 @@ impl MBartForSequenceClassification {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -11,6 +11,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `MBart50Tokenizer` using a `spiece.model` SentencePiece model
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -13,6 +13,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `BertTokenizer` using a `vocab.txt` vocabulary
|
||||
//!
|
||||
//! Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -10,6 +10,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `GptTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -11,6 +11,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `PegasusTokenizer` using a `spiece.model` vocabulary and unigram model.
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -87,7 +87,7 @@ fn _shift_tokens_right(
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `PegasusEncoder` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `PegasusDecoder` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
pub struct PegasusModel {
|
||||
pub(crate) encoder: PegasusEncoder,
|
||||
decoder: PegasusDecoder,
|
||||
@ -152,7 +152,7 @@ impl PegasusModel {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
///
|
||||
@ -322,7 +322,7 @@ impl PegasusForConditionalGeneration {
|
||||
/// * `input_ids` - Optional input tensor of shape (*batch size*, *source_sequence_length*). Must be provided when not running in generation mode
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -210,6 +210,7 @@ impl ProphetNetEncoder {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
/// Container for the ProphetNet encoder output.
|
||||
pub struct ProphetNetEncoderOutput {
|
||||
/// Last hidden states from the model
|
||||
|
@ -224,7 +224,7 @@ impl ProphetNetModel {
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_hidden_states` - Optional tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) corresponding to pre-calculated encoder hidden states (useful for conditional generation)
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `old_layer_states` - Optional Vector `Option<Vec<Option<&LayerState>, Option<&LayerState>>>` of length *n_layer* containing tuples with the past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
|
||||
/// * `decoder_input_embeds` - Optional input tensor of shape (*batch size*, *target_sequence_length*, *embeddings dimension*). This or `decoder_input_ids` must be provided.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
@ -431,7 +431,7 @@ impl ProphetNetForConditionalGeneration {
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). Must be provided when running in generation mode (e.g. initialized with a BOS token)
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `encoder_hidden_states` - Optional tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) corresponding to pre-calculated encoder hidden states (useful for conditional generation)
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `old_layer_states` - Optional Vector `Option<Vec<Option<&LayerState>, Option<&LayerState>>>` of length *n_layer* containing tuples with the past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
|
||||
/// * `decoder_input_embeds` - Optional input tensor of shape (*batch size*, *target_sequence_length*, *embeddings dimension*). This or `decoder_input_ids` must be provided.
|
||||
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
|
||||
|
@ -143,6 +143,7 @@ impl ChunkReformerFeedForward {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct ReformerLayerOutput {
|
||||
pub attention_output: Tensor,
|
||||
pub hidden_states: Tensor,
|
||||
|
@ -11,6 +11,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `ReformerTokenizer` using a `spiece.model` BPE model
|
||||
//!
|
||||
//! Pretrained models on "Crime and Punishment" (Dostoevsky) are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -207,6 +207,7 @@ impl ReformerLMHead {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct PaddedReformerInput {
|
||||
pub input_ids: Option<Tensor>,
|
||||
pub input_embeds: Option<Tensor>,
|
||||
@ -220,7 +221,7 @@ pub struct PaddedReformerInput {
|
||||
/// It is made of the following blocks:
|
||||
/// - `embeddings`: `ReformerEmbeddings` Reformer embeddings, combining word and position embeddings
|
||||
/// - `encoder`: `ReformerEncoder` (transformer) made of a vector of Reformer layer with local or LSH attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `least_common_mult_chunk_length`: least common chunk length for all attention layers
|
||||
/// - `min_chunk_length`: minimum chunk length for all attention layers
|
||||
/// - `pad_token_id`: padding token id used to pad to chunk length multiple if input is long enough to be chunked.
|
||||
|
@ -15,6 +15,7 @@
|
||||
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
|
||||
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
|
||||
//! - `RobertaTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
|
||||
//!
|
||||
//! Pretrained models are available and can be downloaded using RemoteResources.
|
||||
//!
|
||||
//! ```no_run
|
||||
|
@ -541,6 +541,7 @@ impl T5Stack {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct T5BlockOutput {
|
||||
pub hidden_states: Tensor,
|
||||
pub self_attention_weights: Option<Tensor>,
|
||||
|
@ -237,7 +237,7 @@ impl Default for T5Config {
|
||||
/// It is made of the following blocks:
|
||||
/// - `encoder`: `T5Stack` (transformer) made of a vector of encoding layers
|
||||
/// - `decoder`: `T5Stack` (transformer) made of a vector of decoding layers with self attention and encoder cross-attention.
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
|
||||
/// - `embeddings`: `nn::Embedding` Shared embeddings for the encoder and decoder.
|
||||
pub struct T5Model {
|
||||
pub(crate) encoder: T5Stack,
|
||||
@ -312,7 +312,7 @@ impl T5Model {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). This or `decoder_input_embeds` must be provided.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `input_embeds` - Optional input tensor of shape (*batch size*, *source_sequence_length*, *embeddings dimension*). This or `input_ids` must be provided.
|
||||
/// * `decoder_input_embeds` - Optional input tensor of shape (*batch size*, *target_sequence_length*, *embeddings dimension*). This or `decoder_input_ids` must be provided.
|
||||
@ -509,7 +509,7 @@ impl T5ForConditionalGeneration {
|
||||
/// * `attention_mask` - Optional attention mask of shape (*batch size*, *source_sequence_length*) for the encoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `decoder_input_ids` - Optional input tensor of shape (*batch size*, *target_sequence_length*). This or `decoder_input_embeds` must be provided.
|
||||
/// * `encoder_outputs` - Optional tuple made of a tensor of shape (*batch size*, *source_sequence_length*, *encoder_hidden_dim*) and optional vectors of tensors of length *num_encoder_layers* with shape (*batch size*, *source_sequence_length*, *hidden_size*).
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
|
||||
/// * `decoder_attention_mask` - Optional attention mask of shape (*batch size*, *target_sequence_length*) for the decoder positions. Positions with a mask with value 0 will be masked.
|
||||
/// * `input_embeds` - Optional input tensor of shape (*batch size*, *source_sequence_length*, *embeddings dimension*). This or `input_ids` must be provided.
|
||||
/// * `decoder_input_embeds` - Optional input tensor of shape (*batch size*, *target_sequence_length*, *embeddings dimension*). This or `decoder_input_ids` must be provided.
|
||||
|
@ -421,6 +421,7 @@ impl Conversation {
|
||||
/// # Arguments
|
||||
/// - texts: sequence of strings, alternating between past user inputs and past generated responses.
|
||||
/// - ids: sequence of sequence of ids, alternating between past user inputs and past generated responses.
|
||||
///
|
||||
/// These can be generated via a `ConversationModel`'s `encode_prompts`.
|
||||
///
|
||||
/// # Example:
|
||||
|
@ -31,12 +31,13 @@ use crate::pipelines::sentence_embeddings::{
|
||||
use crate::{Config, RustBertError};
|
||||
use regex::Regex;
|
||||
use rust_tokenizers::Offset;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::borrow::Cow;
|
||||
use std::cmp::min;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
/// # Keyword generated by a `KeywordExtractionModel`
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct Keyword {
|
||||
/// String representation of the keyword
|
||||
pub text: String,
|
||||
|
@ -1,3 +1,4 @@
|
||||
#[allow(clippy::doc_lazy_continuation)]
|
||||
/// BSD 3-Clause License
|
||||
///
|
||||
/// Copyright (c) 2007-2022 The scikit-learn developers.
|
||||
|
@ -23,7 +23,7 @@
|
||||
//! All resources for this model can be downloaded using the Python utility script included in this repository.
|
||||
//! 1. Set-up a Python virtual environment and install dependencies (in ./requirements.txt)
|
||||
//! 2. Run the conversion script python /utils/download-dependencies_bert_ner.py.
|
||||
//! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner
|
||||
//! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner
|
||||
//!
|
||||
//! The example below illustrate how to run the model for the default English NER model
|
||||
//! ```no_run
|
||||
|
@ -7,7 +7,7 @@
|
||||
//! installation is to use dynamic linking by pointing to an existing library location:
|
||||
//! - Use the `load-dynamic` cargo feature for `ort`
|
||||
//! - set the `ORT_DYLIB_PATH` to point to the location of downloaded onnxruntime library (`onnxruntime.dll`/`libonnxruntime.so`/`libonnxruntime.dylib`
|
||||
//! depending on the operating system). These can be downloaded from the [release page](https://github.com/microsoft/onnxruntime/releases) of the onnxruntime project
|
||||
//! depending on the operating system). These can be downloaded from the [release page](https://github.com/microsoft/onnxruntime/releases) of the onnxruntime project
|
||||
//!
|
||||
//! For troubleshooting issues when using an ONNX model, it is recommended to add the `tracing-subscriber = { version = "0.3", default-features = false, features = [ "env-filter", "fmt" ] }`
|
||||
//! dependency, and use the `tracing_subscriber::fmt::init();` instruction in the `main` binary.
|
||||
|
@ -309,7 +309,7 @@ impl Config for SentenceEmbeddingsModulesConfig {}
|
||||
|
||||
impl SentenceEmbeddingsModulesConfig {
|
||||
pub fn validate(self) -> Result<Self, RustBertError> {
|
||||
match self.get(0) {
|
||||
match self.first() {
|
||||
Some(SentenceEmbeddingsModuleConfig {
|
||||
module_type: SentenceEmbeddingsModuleType::Transformer,
|
||||
..
|
||||
@ -347,7 +347,7 @@ impl SentenceEmbeddingsModulesConfig {
|
||||
}
|
||||
|
||||
pub fn transformer_module(&self) -> &SentenceEmbeddingsModuleConfig {
|
||||
self.get(0).as_ref().unwrap()
|
||||
self.first().as_ref().unwrap()
|
||||
}
|
||||
|
||||
pub fn pooling_module(&self) -> &SentenceEmbeddingsModuleConfig {
|
||||
|
@ -25,8 +25,8 @@
|
||||
//! Two APIs exist to build text generation models:
|
||||
//! - `TextGenerationModel` is a high-level module that exposes text generation capabilities with a set of reasonable defaults
|
||||
//! - the `LanguageGenerator` trait exposes lower-level text generation capabilities allowing the user to provide additional
|
||||
//! generation options when building the model (via `GenerateConfig`) and at each query (via `GenerateOptions`). Please check the
|
||||
//! [`generation_utils` module](../generation_utils/index.html) for more details
|
||||
//! generation options when building the model (via `GenerateConfig`) and at each query (via `GenerateOptions`). Please check the
|
||||
//! [`generation_utils` module](../generation_utils/index.html) for more details
|
||||
//!
|
||||
//!
|
||||
//! Customized text generation models models can be loaded by overwriting the resources in the configuration.
|
||||
|
@ -30,12 +30,12 @@ enum ModelSize {
|
||||
/// The logic for selecting the most appropriate model is as follows:
|
||||
/// - If not specified, the model will be executed on a CUDA device if available, otherwise on the CPU
|
||||
/// - If the model type is specified (e.g. `Marian`), a model with this architecture will be created. The compatibility of the model
|
||||
/// with the source and target languages will be verified, and the builder will error if the settings provided are not supported.
|
||||
/// with the source and target languages will be verified, and the builder will error if the settings provided are not supported.
|
||||
/// - If the model size is specified, a model of the corresponding size class (computational budget) will be created. The compatibility of the model
|
||||
/// with the source and target languages will be verified, and the builder will error if the settings provided are not supported.
|
||||
/// with the source and target languages will be verified, and the builder will error if the settings provided are not supported.
|
||||
/// - If no source or target languages are provided, a multilingual M2M100 model will be returned
|
||||
/// - If no model type is provided, an average sized-model (Marian) will be returned if a pretrained model exists that covers the requested source/target languages provided.
|
||||
/// Otherwise a M2M100 multi-lingual model will be returned.
|
||||
/// Otherwise a M2M100 multi-lingual model will be returned.
|
||||
///
|
||||
/// The options for the builder are provided with dedicated "builder function", the call to `create_model()` creates a model
|
||||
/// from the builder.
|
||||
|
@ -7,7 +7,6 @@ use rust_bert::resources::{load_weights, RemoteResource, ResourceProvider};
|
||||
use rust_bert::Config;
|
||||
use rust_tokenizers::tokenizer::{Gpt2Tokenizer, Tokenizer};
|
||||
use rust_tokenizers::vocab::Vocab;
|
||||
use std::convert::TryFrom;
|
||||
use tch::{nn, Device, Kind, Tensor};
|
||||
|
||||
/// Equivalent Python code:
|
||||
@ -107,7 +106,7 @@ fn gpt_j_correctness() -> anyhow::Result<()> {
|
||||
Tensor::from_slice(
|
||||
&input
|
||||
.iter()
|
||||
.map(|&e| i64::try_from(e != pad_token).unwrap())
|
||||
.map(|&e| i64::from(e != pad_token))
|
||||
.collect::<Vec<_>>(),
|
||||
)
|
||||
.to(device)
|
||||
|
@ -50,13 +50,20 @@ import sys
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
from numpy.lib.format import write_array
|
||||
from numpy.lib.npyio import zipfile_factory
|
||||
# from numpy.lib.npyio import zipfile_factory
|
||||
from torch import Tensor
|
||||
|
||||
def zipfile_factory(file, *args, **kwargs):
|
||||
if not hasattr(file, 'read'):
|
||||
file = os.fspath(file)
|
||||
import zipfile
|
||||
kwargs['allowZip64'] = True
|
||||
kwargs['compresslevel'] = 4
|
||||
return zipfile.ZipFile(file, *args, **kwargs)
|
||||
|
||||
def get_bf16_repr(input_tensor: torch.Tensor) -> np.ndarray:
|
||||
"""Convert a bfloat16 tensor to an equivalent byte representation in Numpy.
|
||||
@ -125,6 +132,12 @@ if __name__ == "__main__":
|
||||
help="Use this flag to enable automatic download of the libtorch library.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
logger = logging.getLogger('convert_model')
|
||||
logger.setLevel(logging.DEBUG)
|
||||
fh = logging.FileHandler('convert_model.log')
|
||||
fh.setLevel(logging.DEBUG)
|
||||
logger.addHandler(fh)
|
||||
|
||||
target_folder = Path(args.source_file[0]).parent
|
||||
with zipfile_factory(
|
||||
@ -133,7 +146,7 @@ if __name__ == "__main__":
|
||||
for source_file_or_pattern in args.source_file:
|
||||
source_files = glob.glob(source_file_or_pattern)
|
||||
for source_file in source_files:
|
||||
logging.info(f"Processing source file {source_file}...")
|
||||
logger.info(f"Processing source file {source_file}")
|
||||
nps = {}
|
||||
source_file = Path(source_file)
|
||||
weights = torch.load(str(source_file), map_location="cpu")
|
||||
@ -168,11 +181,11 @@ if __name__ == "__main__":
|
||||
)
|
||||
else:
|
||||
nps[k] = np.ascontiguousarray(tensor)
|
||||
logging.info(
|
||||
logger.info(
|
||||
f"converted {k} - {str(sys.getsizeof(nps[k]))} bytes"
|
||||
)
|
||||
else:
|
||||
logging.info(f"skipped non-tensor object: {k}")
|
||||
logger.info(f"skipped non-tensor object: {k}")
|
||||
append_to_zipf(nps, output_zipfile)
|
||||
|
||||
source = str(target_folder / "model.npz")
|
||||
|
11
utils/requirements.txt
Normal file
11
utils/requirements.txt
Normal file
@ -0,0 +1,11 @@
|
||||
filelock==3.15.3
|
||||
fsspec==2024.6.0
|
||||
Jinja2==3.1.4
|
||||
MarkupSafe==2.1.5
|
||||
mpmath==1.3.0
|
||||
networkx==3.3
|
||||
numpy==2.0.0
|
||||
sympy==1.12.1
|
||||
torch==2.3.1
|
||||
typing_extensions==4.12.2
|
||||
requests==2.32.0
|
Loading…
Reference in New Issue
Block a user