effectful/effectful-plugin/src-legacy/Effectful/Plugin.hs

242 lines
13 KiB
Haskell

{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE CPP #-}
module Effectful.Plugin (plugin) where
import Data.Function (on)
import Data.IORef (IORef, modifyIORef, newIORef, readIORef)
import Data.Maybe (isNothing, mapMaybe)
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Traversable (for)
import GHC.TcPluginM.Extra (lookupModule, lookupName)
#if __GLASGOW_HASKELL__ >= 900
import GHC.Core.Class (Class)
import GHC.Core.InstEnv (InstEnvs, lookupInstEnv)
import GHC.Core.Unify (tcUnifyTy)
import GHC.Plugins (Outputable (ppr), Plugin (pluginRecompile, tcPlugin), PredType,
Role (Nominal), TCvSubst, Type, defaultPlugin, eqType, fsLit, mkModuleName,
mkTcOcc, nonDetCmpType, purePlugin, showSDocUnsafe, splitAppTys, substTys,
tyConClass_maybe)
import GHC.Tc.Plugin (tcLookupClass, tcPluginIO)
import GHC.Tc.Solver.Monad (newWantedEq, runTcSDeriveds)
import GHC.Tc.Types (TcM, TcPlugin (TcPlugin, tcPluginInit, tcPluginSolve, tcPluginStop),
TcPluginM, TcPluginResult (TcPluginOk), unsafeTcPluginTcM)
import GHC.Tc.Types.Constraint (Ct (CDictCan, CNonCanonical), CtEvidence (CtWanted), CtLoc, ctPred)
import GHC.Tc.Utils.Env (tcGetInstEnvs)
import GHC.Tc.Utils.TcType (tcSplitTyConApp)
#else
import Class (Class)
#if __GLASGOW_HASKELL__ >= 810
import Constraint (Ct (CDictCan, CNonCanonical), CtEvidence (CtWanted), CtLoc, ctPred)
#endif
import GhcPlugins (Outputable (ppr), Plugin (pluginRecompile, tcPlugin), PredType,
Role (Nominal), TCvSubst, Type, defaultPlugin, eqType, fsLit, mkModuleName,
mkTcOcc, nonDetCmpType, purePlugin, showSDocUnsafe, splitAppTys, substTys,
tyConClass_maybe)
import InstEnv (InstEnvs, lookupInstEnv)
import TcEnv (tcGetInstEnvs)
import TcPluginM (tcLookupClass, tcPluginIO)
import TcRnTypes
import TcSMonad (newWantedEq, runTcSDeriveds)
import TcType (tcSplitTyConApp)
import Unify (tcUnifyTy)
#endif
plugin :: Plugin
plugin = makePlugin [("effectful", "Effectful.Internal.Effect", ":>")]
-- | A list of unique, unambiguous Haskell names in the format of @(packageName, moduleName, identifier)@.
type Names = [(String, String, String)]
-- | Make a @polysemy-plugin@-style effect disambiguation plugin that applies to all the "element-of" typeclasses
-- passed in. Each of the names passed in should have type @k -> [k] -> 'Data.Kind.Type'@ where @k@ can be either
-- polymorphic or monomorphic.
--
-- Some examples include:
--
-- @
-- (\"cleff\", \"Cleff.Internal.Rec\", \":>\")
-- (\"polysemy\", \"Polysemy.Internal.Union\", \"Member\")
-- (\"effectful\", \"Effectful.Internal.Effect\", \":>\")
-- @
--
-- You can see the source code for notes on the implementation of the plugin.
makePlugin :: Names -> Plugin
makePlugin names = defaultPlugin
{ tcPlugin = const (Just $ fakedep names)
, pluginRecompile = purePlugin
}
fakedep :: Names -> TcPlugin
fakedep names = TcPlugin
{ tcPluginInit = initFakedep names
, tcPluginSolve = solveFakedepForAllElemClasses
, tcPluginStop = const $ pure ()
}
liftTc :: TcM a -> TcPluginM a
liftTc = unsafeTcPluginTcM
liftIo :: IO a -> TcPluginM a
liftIo = tcPluginIO
type VisitedSet = Set (OrdType, OrdType)
initFakedep :: Names -> TcPluginM ([Class], IORef VisitedSet)
initFakedep names = do
classes <- for names \(packageName, elemModuleName, elemClassName) -> do
recMod <- lookupModule (mkModuleName elemModuleName) $ fsLit packageName
nm <- lookupName recMod $ mkTcOcc elemClassName
tcLookupClass nm
visited <- liftIo $ newIORef Set.empty
pure (classes, visited)
data FakedepGiven = FakedepGiven
{ givenEffHead :: Type
, givenEff :: Type
, givenEs :: Type
}
instance Show FakedepGiven where
show (FakedepGiven _ e es) = "(Elem " <> showSDocUnsafe (ppr e) <> " " <> showSDocUnsafe (ppr es) <> ")"
data FakedepWanted = FakedepWanted FakedepGiven CtLoc
instance Show FakedepWanted where
show (FakedepWanted given _) = show given
newtype OrdType = OrdType { unOrdType :: Type }
instance Eq OrdType where
(==) = eqType `on` unOrdType
instance Ord OrdType where
compare = nonDetCmpType `on` unOrdType
solveFakedepForAllElemClasses :: ([Class], IORef VisitedSet) -> [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult
solveFakedepForAllElemClasses (elemClasses, visitedRef) givens _ wanteds = do
solns <- concat <$> for elemClasses \elemCls -> solveFakedep (elemCls, visitedRef) givens wanteds
pure $ TcPluginOk [] solns
solveFakedep :: (Class, IORef VisitedSet) -> [Ct] -> [Ct] -> TcPluginM [Ct]
solveFakedep _ _ [] = pure []
solveFakedep (elemCls, visitedRef) allGivens allWanteds = do
-- We're given two lists of constraints here:
-- - 'allGivens' are constraints already in our context,
-- - 'allWanteds' are constraints that need to be solved.
-- In the following notes, the words "give/given" and "want/wanted" all refer to this specific technical concept:
-- given constraints are those that we can use, and wanted constraints are those that we need to solve.
let
-- The only type of constraint we're interested in solving are 'Elem e es' constraints. Therefore, we extract these
-- constraints out of the 'allGivens' and 'allWanted's.
givens = mapMaybe relevantGiven allGivens
wanteds = mapMaybe relevantWanted allWanteds
-- We store a list of the types of all given constraints, which will be useful later.
allGivenTypes = ctPred <$> allGivens
-- We also store a list of wanted constraints that are /not/ 'Elem e es' for later use.
extraWanteds = ctPred <$> filter irrelevant allWanteds
-- traceM $ "Givens: " <> show (showSDocUnsafe . ppr <$> allGivens)
-- traceM $ "Wanteds: " <> show (showSDocUnsafe . ppr <$> allWanteds)
-- For each 'Elem e es' we /want/ to solve (the "goal"), we need to eventually correspond it to another unique
-- /given/ 'Elem e es' that will make the program typecheck (the "solution").
globals <- liftTc tcGetInstEnvs -- Get the global instances environment for later use
let solns = mapMaybe (solve globals allGivenTypes extraWanteds givens) wanteds
-- Now we need to tell GHC the solutions. The way we do this is to generate a new equality constraint, like
-- 'Elem (State e) es ~ Elem (State Int) es', so that GHC's constraint solver will know that 'e' must be 'Int'.
eqns <- for solns \(FakedepWanted (FakedepGiven _ goalEff _) loc, FakedepGiven _ solnEff _) -> do
(eqn, _) <- liftTc $ runTcSDeriveds $ newWantedEq loc Nominal goalEff solnEff
pure (CNonCanonical eqn, (OrdType goalEff, OrdType solnEff))
-- For any solution we've generated, we need to be careful not to generate it again, or we might end up generating
-- infinitely many solutions. So, we record any already generated solution in a set.
visitedSolnPairs <- liftIo $ readIORef visitedRef
let solnEqns = fst <$> flip filter eqns \(_, pair) -> Set.notMember pair visitedSolnPairs
liftIo $ modifyIORef visitedRef (Set.union $ Set.fromList $ snd <$> eqns)
-- traceM $ "Emitting: " <> showSDocUnsafe (ppr solnEqns)
pure solnEqns -- Finally we tell GHC the solutions.
where
-- Determine if there is a unique solution to a goal from a set of candidates.
solve :: InstEnvs -> [PredType] -> [PredType] -> [FakedepGiven] -> FakedepWanted -> Maybe (FakedepWanted, FakedepGiven)
solve globals allGivenTypes extraWanteds givens goal@(FakedepWanted (FakedepGiven _ _ goalEs) _) =
let
-- Apart from 'Elem' constraints in the context, the effects already hardwired into the effect stack type,
-- like those in 'A : B : C : es', also need to be considered. So here we extract that for them to be considered
-- simultaneously with regular 'Elem' constraints.
cands = extractExtraGivens goalEs goalEs <> givens
-- The first criteria is that the candidate constraint must /unify/ with the goal. This means that the type
-- variables in the goal can be instantiated in a way so that the goal becomes equal to the candidate.
-- For example, the candidates 'Elem (State Int) es' and 'Elem (State String) es' both unify with the goal
-- 'Elem (State s) es'.
unifiableCands = mapMaybe (unifiableWith goal) cands
in case unifiableCands of
-- If there's already only one unique solution, commit to it; in the worst case where it doesn't actually match,
-- we get a cleaner error message like "Unable to match (State String) to (State Int)" instead of a type
-- ambiguity error.
[(soln, _)] -> Just (goal, soln)
_ ->
-- Otherwise, the second criteria comes in: the candidate must satisfy all other constraints we /want/ to solve.
-- For example, when we want to solve '(Elem (State a) es, Num a)`, the candidate 'Elem (State Int) es' will do
-- the job, because it satisfied 'Num a'; however 'Elem (State String) es' will be excluded.
let satisfiableCands = filter (satisfiable globals allGivenTypes extraWanteds) unifiableCands
-- Finally, if there is a unique candidate remaining, we use it as the solution; otherwise we don't solve anything.
in case satisfiableCands of
[(soln, _)] -> Just (goal, soln)
_ -> Nothing
-- Extract the heads of a type like 'A : B : C : es' into 'FakedepGiven's.
extractExtraGivens :: Type -> Type -> [FakedepGiven]
extractExtraGivens fullEs es = case splitAppTys es of
(_colon, [_kind, e, es']) ->
let (dtHead, _tyArgs) = splitAppTys e
in FakedepGiven dtHead e fullEs : extractExtraGivens fullEs es'
_ -> []
-- Determine whether a given constraint is of form 'Elem e es'.
relevantGiven :: Ct -> Maybe FakedepGiven
relevantGiven (CDictCan _ cls [_kind, eff, es] _) -- Polymorphic case
| cls == elemCls = Just $ FakedepGiven (fst $ splitAppTys eff) eff es
relevantGiven (CDictCan _ cls [eff, es] _) -- Monomorphic case
| cls == elemCls = Just $ FakedepGiven (fst $ splitAppTys eff) eff es
relevantGiven _ = Nothing
-- Determine whether a wanted constraint is of form 'Elem e es'.
relevantWanted :: Ct -> Maybe FakedepWanted
relevantWanted (CDictCan (CtWanted _ _ _ loc) cls [_kind, eff, es] _) -- Polymorphic case
| cls == elemCls = Just $ FakedepWanted (FakedepGiven (fst $ splitAppTys eff) eff es) loc
relevantWanted (CDictCan (CtWanted _ _ _ loc) cls [eff, es] _) -- Monomorphic case
| cls == elemCls = Just $ FakedepWanted (FakedepGiven (fst $ splitAppTys eff) eff es) loc
relevantWanted _ = Nothing
-- Determine whether a constraint is /not/ of form 'Elem e es'.
irrelevant :: Ct -> Bool
irrelevant = isNothing . relevantGiven
-- Given a wanted constraint and a given constraint, unify them and give back a substitution that can be applied
-- to the wanted to make it equal to the given.
unifiableWith :: FakedepWanted -> FakedepGiven -> Maybe (FakedepGiven, TCvSubst)
unifiableWith (FakedepWanted goal _) cand =
-- First, the 'es' type must be equal, and the datatype head of the effect must be equal too.
if givenEs goal `eqType` givenEs cand && givenEffHead goal `eqType` givenEffHead cand
then (cand, ) <$> tcUnifyTy (givenEff goal) (givenEff cand) -- Then the effect type must unify.
else Nothing
-- Check whether a candidate can satisfy all tthe wanted constraints.
satisfiable :: InstEnvs -> [PredType] -> [PredType] -> (FakedepGiven, TCvSubst) -> Bool
satisfiable globals givens wanteds (_, subst) =
let
wantedsInst = substTys subst wanteds -- The wanteds after unification.
givensInst = Set.fromList $ OrdType <$> substTys subst givens -- The local given context after unification.
in flip all wantedsInst \want ->
if Set.member (OrdType want) givensInst then True -- Can we find this constraint in our local context?
else let (con, args) = tcSplitTyConApp want
in case tyConClass_maybe con of -- If not, lookup the global environment.
Nothing -> False
Just cls -> let (res, _, _) = lookupInstEnv False globals cls args in not $ null res