graphql-engine/server/src-lib/Hasura/Server/API/V2Query.hs

137 lines
4.8 KiB
Haskell
Raw Normal View History

-- | The RQL query ('/v2/query')
module Hasura.Server.API.V2Query where
import Hasura.Prelude
import qualified Data.Environment as Env
import qualified Network.HTTP.Client as HTTP
import Control.Monad.Trans.Control (MonadBaseControl)
import Data.Aeson
import Data.Aeson.Casing
import Data.Aeson.TH
import qualified Hasura.Backends.BigQuery.DDL.RunSQL as BigQuery
import qualified Hasura.Backends.MSSQL.DDL.RunSQL as MSSQL
import qualified Hasura.Backends.Postgres.DDL.RunSQL as Postgres
import qualified Hasura.Tracing as Tracing
import Hasura.Base.Error
import Hasura.EncJSON
import Hasura.Metadata.Class
import Hasura.RQL.DDL.Schema
import Hasura.RQL.DML.Count
import Hasura.RQL.DML.Delete
import Hasura.RQL.DML.Insert
import Hasura.RQL.DML.Select
import Hasura.RQL.DML.Types
import Hasura.RQL.DML.Update
import Hasura.RQL.Types
import Hasura.RQL.Types.Run
[Preview] Inherited roles for postgres read queries fixes #3868 docker image - `hasura/graphql-engine:inherited-roles-preview-48b73a2de` Note: To be able to use the inherited roles feature, the graphql-engine should be started with the env variable `HASURA_GRAPHQL_EXPERIMENTAL_FEATURES` set to `inherited_roles`. Introduction ------------ This PR implements the idea of multiple roles as presented in this [paper](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/FGALanguageICDE07.pdf). The multiple roles feature in this PR can be used via inherited roles. An inherited role is a role which can be created by combining multiple singular roles. For example, if there are two roles `author` and `editor` configured in the graphql-engine, then we can create a inherited role with the name of `combined_author_editor` role which will combine the select permissions of the `author` and `editor` roles and then make GraphQL queries using the `combined_author_editor`. How are select permissions of different roles are combined? ------------------------------------------------------------ A select permission includes 5 things: 1. Columns accessible to the role 2. Row selection filter 3. Limit 4. Allow aggregation 5. Scalar computed fields accessible to the role Suppose there are two roles, `role1` gives access to the `address` column with row filter `P1` and `role2` gives access to both the `address` and the `phone` column with row filter `P2` and we create a new role `combined_roles` which combines `role1` and `role2`. Let's say the following GraphQL query is queried with the `combined_roles` role. ```graphql query { employees { address phone } } ``` This will translate to the following SQL query: ```sql select (case when (P1 or P2) then address else null end) as address, (case when P2 then phone else null end) as phone from employee where (P1 or P2) ``` The other parameters of the select permission will be combined in the following manner: 1. Limit - Minimum of the limits will be the limit of the inherited role 2. Allow aggregations - If any of the role allows aggregation, then the inherited role will allow aggregation 3. Scalar computed fields - same as table column fields, as in the above example APIs for inherited roles: ---------------------- 1. `add_inherited_role` `add_inherited_role` is the [metadata API](https://hasura.io/docs/1.0/graphql/core/api-reference/index.html#schema-metadata-api) to create a new inherited role. It accepts two arguments `role_name`: the name of the inherited role to be added (String) `role_set`: list of roles that need to be combined (Array of Strings) Example: ```json { "type": "add_inherited_role", "args": { "role_name":"combined_user", "role_set":[ "user", "user1" ] } } ``` After adding the inherited role, the inherited role can be used like single roles like earlier Note: An inherited role can only be created with non-inherited/singular roles. 2. `drop_inherited_role` The `drop_inherited_role` API accepts the name of the inherited role and drops it from the metadata. It accepts a single argument: `role_name`: name of the inherited role to be dropped Example: ```json { "type": "drop_inherited_role", "args": { "role_name":"combined_user" } } ``` Metadata --------- The derived roles metadata will be included under the `experimental_features` key while exporting the metadata. ```json { "experimental_features": { "derived_roles": [ { "role_name": "manager_is_employee_too", "role_set": [ "employee", "manager" ] } ] } } ``` Scope ------ Only postgres queries and subscriptions are supported in this PR. Important points: ----------------- 1. All columns exposed to an inherited role will be marked as `nullable`, this is done so that cell value nullification can be done. TODOs ------- - [ ] Tests - [ ] Test a GraphQL query running with a inherited role without enabling inherited roles in experimental features - [] Tests for aggregate queries, limit, computed fields, functions, subscriptions (?) - [ ] Introspection test with a inherited role (nullability changes in a inherited role) - [ ] Docs - [ ] Changelog Co-authored-by: Vamshi Surabhi <6562944+0x777@users.noreply.github.com> GitOrigin-RevId: 3b8ee1e11f5ceca80fe294f8c074d42fbccfec63
2021-03-08 14:14:13 +03:00
import Hasura.Server.Types
import Hasura.Server.Version (HasVersion)
import Hasura.Session
data RQLQuery
= RQInsert !InsertQuery
| RQSelect !SelectQuery
| RQUpdate !UpdateQuery
| RQDelete !DeleteQuery
| RQCount !CountQuery
| RQRunSql !Postgres.RunSQL
| RQMssqlRunSql !MSSQL.MSSQLRunSQL
| RQCitusRunSql !Postgres.RunSQL
| RQBigqueryRunSql !BigQuery.BigQueryRunSQL
| RQBigqueryDatabaseInspection !BigQuery.BigQueryRunSQL
| RQBulk ![RQLQuery]
deriving (Show)
$(deriveJSON
defaultOptions { constructorTagModifier = snakeCase . drop 2
, sumEncoding = TaggedObject "type" "args"
}
''RQLQuery)
runQuery
:: ( HasVersion
, MonadIO m
, MonadBaseControl IO m
, Tracing.MonadTrace m
, MonadMetadataStorage m
, MonadResolveSource m
)
=> Env.Environment
-> InstanceId
-> UserInfo
-> RebuildableSchemaCache
-> HTTP.Manager
-> ServerConfigCtx
-> RQLQuery
-> m (EncJSON, RebuildableSchemaCache)
runQuery env instanceId userInfo schemaCache httpManager serverConfigCtx rqlQuery = do
(metadata, currentResourceVersion) <- fetchMetadata
result <- runQueryM env rqlQuery & Tracing.interpTraceT \x -> do
(((js, tracemeta), meta), rsc, ci) <-
x & runMetadataT metadata
& runCacheRWT schemaCache
& peelRun runCtx
& runExceptT
& liftEitherM
pure ((js, rsc, ci, meta), tracemeta)
withReload currentResourceVersion result
where
runCtx = RunCtx userInfo httpManager serverConfigCtx
withReload currentResourceVersion (result, updatedCache, invalidations, updatedMetadata) = do
when (queryModifiesSchema rqlQuery) $ do
case _sccMaintenanceMode serverConfigCtx of
MaintenanceModeDisabled -> do
-- set modified metadata in storage
newResourceVersion <- setMetadata currentResourceVersion updatedMetadata
-- notify schema cache sync
notifySchemaCacheSync newResourceVersion instanceId invalidations
MaintenanceModeEnabled ->
throw500 "metadata cannot be modified in maintenance mode"
pure (result, updatedCache)
queryModifiesSchema :: RQLQuery -> Bool
queryModifiesSchema = \case
RQInsert _ -> False
RQSelect _ -> False
RQUpdate _ -> False
RQDelete _ -> False
RQCount _ -> False
RQRunSql q -> Postgres.isSchemaCacheBuildRequiredRunSQL q
RQCitusRunSql q -> Postgres.isSchemaCacheBuildRequiredRunSQL q
RQMssqlRunSql q -> MSSQL.sqlContainsDDLKeyword $ MSSQL._mrsSql q
RQBigqueryRunSql _ -> False
RQBigqueryDatabaseInspection _ -> False
RQBulk l -> any queryModifiesSchema l
runQueryM
:: ( HasVersion
, MonadError QErr m
, MonadIO m
, MonadBaseControl IO m
, UserInfoM m
, CacheRWM m
, HasServerConfigCtx m
, Tracing.MonadTrace m
, MetadataM m
)
=> Env.Environment -> RQLQuery -> m EncJSON
runQueryM env = \case
server: support remote relationships on SQL Server and BigQuery (#1497) Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST. This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible). The approach now changes to this: 1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed. 1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary. 1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response. ### Known issues 1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR. 1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR. 1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins. 1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST. 1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code. ### Notes to the reviewers I think it is best reviewed commit by commit. 1. The first one is very straight forward. 1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore 1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor 1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server. https://github.com/hasura/graphql-engine-mono/pull/1497 GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
2021-06-11 06:26:50 +03:00
RQInsert q -> runInsert q
RQSelect q -> runSelect q
server: support remote relationships on SQL Server and BigQuery (#1497) Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST. This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible). The approach now changes to this: 1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed. 1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary. 1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response. ### Known issues 1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR. 1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR. 1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins. 1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST. 1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code. ### Notes to the reviewers I think it is best reviewed commit by commit. 1. The first one is very straight forward. 1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore 1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor 1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server. https://github.com/hasura/graphql-engine-mono/pull/1497 GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
2021-06-11 06:26:50 +03:00
RQUpdate q -> runUpdate q
RQDelete q -> runDelete q
RQCount q -> runCount q
RQRunSql q -> Postgres.runRunSQL @'Vanilla q
RQMssqlRunSql q -> MSSQL.runSQL q
RQCitusRunSql q -> Postgres.runRunSQL @'Citus q
RQBigqueryRunSql q -> BigQuery.runSQL q
RQBigqueryDatabaseInspection q -> BigQuery.runDatabaseInspection q
RQBulk l -> encJFromList <$> indexedMapM (runQueryM env) l