graphql-engine/server/src-lib/Hasura/GraphQL/Execute/Subscription/Plan.hs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

306 lines
12 KiB
Haskell
Raw Normal View History

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
-- |
-- = Reasonably efficient PostgreSQL live queries
--
-- The module implements /query multiplexing/, which is our implementation strategy for live queries
-- (i.e. GraphQL subscriptions) made against Postgres. Fundamentally, our implementation is built
-- around polling, which is never ideal, but its a lot easier to implement than trying to do something
-- event-based. To minimize the resource cost of polling, we use /multiplexing/, which is essentially
-- a two-tier batching strategy.
--
-- == The high-level idea
--
-- The objective is to minimize the number of concurrent polling workers to reduce database load as
-- much as possible. A very naïve strategy would be to group identical queries together so we only have
-- one poller per /unique/ active subscription. Thats a good start, but of course, in practice, most
-- queries differ slightly. However, it happens that they very frequently /only differ in their
-- variables/ (that is, GraphQL query variables and session variables), and in those cases, we try to
-- generated parameterized SQL. This means that the same prepared SQL query can be reused, just with a
-- different set of variables.
--
-- To give a concrete example, consider the following query:
--
-- > subscription vote_count($post_id: Int!) {
-- > vote_count(where: {post_id: {_eq: $post_id}}) {
-- > votes
-- > }
-- > }
--
-- No matter what the client provides for @$post_id@, we will always generate the same SQL:
--
-- > SELECT votes FROM vote_count WHERE post_id = $1
--
-- If multiple clients subscribe to @vote_count@, we can certainly reuse the same prepared query. For
-- example, imagine we had 10 concurrent subscribers, each listening on a distinct @$post_id@:
--
-- > let postIds = [3, 11, 32, 56, 13, 97, 24, 43, 109, 48]
--
-- We could iterate over @postIds@ in Haskell, executing the same prepared query 10 times:
--
-- > for postIds $ \postId ->
-- > Q.listQE defaultTxErrorHandler preparedQuery (Identity postId) True
--
-- Sadly, that on its own isnt good enough. The overhead of running each query is large enough that
-- Postgres becomes overwhelmed if we have to serve lots of concurrent subscribers. Therefore, what we
-- want to be able to do is somehow make one query instead of ten.
--
-- === Multiplexing
--
-- This is where multiplexing comes in. By taking advantage of Postgres
-- <https://www.postgresql.org/docs/11/queries-table-expressions.html#QUERIES-LATERAL lateral joins>,
-- we can do the iteration in Postgres rather than in Haskell, allowing us to pay the query overhead
-- just once for all ten subscribers. Essentially, lateral joins add 'map'-like functionality to SQL,
-- so we can run our query once per @$post_id@:
--
-- > SELECT results.votes
-- > FROM unnest($1::integer[]) query_variables (post_id)
-- > LEFT JOIN LATERAL (
-- > SELECT coalesce(json_agg(votes), '[]')
-- > FROM vote_count WHERE vote_count.post_id = query_variables.post_id
-- > ) results ON true
--
-- If we generalize this approach just a little bit more, we can apply this transformation to arbitrary
-- queries parameterized over arbitrary session and query variables!
--
-- == Implementation overview
--
-- To support query multiplexing, we maintain a tree of the following types, where @>@ should be read
-- as “contains”:
--
-- @
-- 'SubscriptionsState' > 'Poller' > 'Cohort' > 'Subscriber'
-- @
--
-- Heres a brief summary of each types role:
--
-- * A 'Subscriber' is an actual client with an open websocket connection.
--
-- * A 'Cohort' is a set of 'Subscriber's that are all subscribed to the same query /with the exact
-- same variables/. (By batching these together, we can do better than multiplexing, since we can
-- just query the data once.)
--
-- * A 'Poller' is a worker thread for a single, multiplexed query. It fetches data for a set of
-- 'Cohort's that all use the same parameterized query, but have different sets of variables.
--
-- * Finally, the 'SubscriptionsState' is the top-level container that holds all the active 'Poller's.
--
-- Additional details are provided by the documentation for individual bindings.
module Hasura.GraphQL.Execute.Subscription.Plan
( CohortId,
dummyCohortId,
newCohortId,
CohortIdArray (..),
CohortVariablesArray (..),
CohortVariables,
_cvCursorVariables,
mkCohortVariables,
ValidatedVariables (..),
mkUnsafeValidateVariables,
modifyCursorCohortVariables,
ValidatedQueryVariables,
ValidatedSyntheticVariables,
ValidatedCursorVariables,
SubscriptionQueryPlan (..),
SubscriptionQueryPlanExplanation (..),
ParameterizedSubscriptionQueryPlan (..),
CursorVariableValues (..),
cvSessionVariables,
cvCursorVariables,
cvQueryVariables,
cvSyntheticVariables,
unValidatedVariables,
)
where
import Control.Lens (makeLenses)
import Data.Aeson.Extended qualified as J
import Data.Aeson.TH qualified as J
import Data.HashMap.Strict qualified as Map
import Data.HashSet qualified as Set
import Data.UUID (UUID)
import Data.UUID qualified as UUID
import Data.UUID.V4 qualified as UUID
import Database.PG.Query qualified as Q
import Database.PG.Query.PTI qualified as PTI
import Hasura.Backends.Postgres.SQL.Value
import Hasura.Prelude
import Hasura.RQL.Types.Backend
import Hasura.SQL.Backend
import Hasura.Session
import Language.GraphQL.Draft.Syntax qualified as G
import PostgreSQL.Binary.Encoding qualified as PE
----------------------------------------------------------------------------------------------------
-- Variable validation
-- | When running multiplexed queries, we have to be especially careful about user
-- input, since invalid values will cause the query to fail, causing collateral
-- damage for anyone else multiplexed into the same query. Therefore, we
-- pre-validate variables against Postgres by executing a no-op query of the shape
--
-- > SELECT 'v1'::t1, 'v2'::t2, ..., 'vn'::tn
--
-- so if any variable values are invalid, the error will be caught early.
newtype ValidatedVariables f = ValidatedVariables {_unValidatedVariables :: (f TxtEncodedVal)}
deriving instance (Show (f TxtEncodedVal)) => Show (ValidatedVariables f)
deriving instance (Eq (f TxtEncodedVal)) => Eq (ValidatedVariables f)
deriving instance (Hashable (f TxtEncodedVal)) => Hashable (ValidatedVariables f)
deriving instance (J.ToJSON (f TxtEncodedVal)) => J.ToJSON (ValidatedVariables f)
deriving instance (Semigroup (f TxtEncodedVal)) => Semigroup (ValidatedVariables f)
deriving instance (Monoid (f TxtEncodedVal)) => Monoid (ValidatedVariables f)
$(makeLenses 'ValidatedVariables)
type ValidatedQueryVariables = ValidatedVariables (Map.HashMap G.Name)
type ValidatedSyntheticVariables = ValidatedVariables []
type ValidatedCursorVariables = ValidatedVariables (Map.HashMap G.Name)
mkUnsafeValidateVariables :: f TxtEncodedVal -> ValidatedVariables f
mkUnsafeValidateVariables = ValidatedVariables
----------------------------------------------------------------------------------------------------
-- Cohort
newtype CohortId = CohortId {unCohortId :: UUID}
deriving (Show, Eq, Hashable, J.ToJSON, J.FromJSON, Q.FromCol)
newCohortId :: (MonadIO m) => m CohortId
newCohortId = CohortId <$> liftIO UUID.nextRandom
dummyCohortId :: CohortId
dummyCohortId = CohortId UUID.nil
data CohortVariables = CohortVariables
{ _cvSessionVariables :: !SessionVariables,
_cvQueryVariables :: !ValidatedQueryVariables,
-- | To allow more queries to be multiplexed together, we introduce “synthetic”
-- variables for /all/ SQL literals in a query, even if they dont correspond to
-- any GraphQL variable. For example, the query
--
-- > subscription latest_tracks($condition: tracks_bool_exp!) {
-- > tracks(where: $tracks_bool_exp) {
-- > id
-- > title
-- > }
-- > }
--
-- might be executed with similar values for @$condition@, such as @{"album_id":
-- {"_eq": "1"}}@ and @{"album_id": {"_eq": "2"}}@.
--
-- Normally, we wouldnt bother parameterizing over the @1@ and @2@ literals in the
-- resulting query because we cant cache that query plan (since different
-- @$condition@ values could lead to different SQL). However, for live queries, we
-- can still take advantage of the similarity between the two queries by
-- multiplexing them together, so we replace them with references to synthetic
-- variables.
_cvSyntheticVariables :: !ValidatedSyntheticVariables,
-- | Cursor variables contain the latest value of the cursor.
-- The value of the cursor variables are updated after every poll.
-- If the value has been changed - see [Streaming subscription polling].
-- Cursor variables are only used in the case of streaming subscriptions,
-- for live queries it will be empty.
_cvCursorVariables :: !ValidatedCursorVariables
}
deriving (Show, Eq, Generic)
instance Hashable CohortVariables
$(makeLenses 'CohortVariables)
modifyCursorCohortVariables ::
ValidatedCursorVariables ->
CohortVariables ->
CohortVariables
modifyCursorCohortVariables validatedCursorVariables cohortVariables =
cohortVariables {_cvCursorVariables = validatedCursorVariables}
-- | Builds a cohort's variables by only using the session variables that
-- are required for the subscription
mkCohortVariables ::
Set.HashSet SessionVariable ->
SessionVariables ->
ValidatedQueryVariables ->
ValidatedSyntheticVariables ->
ValidatedCursorVariables ->
CohortVariables
mkCohortVariables requiredSessionVariables sessionVariableValues =
CohortVariables $
filterSessionVariables
(\k _ -> Set.member k requiredSessionVariables)
sessionVariableValues
instance J.ToJSON CohortVariables where
toJSON (CohortVariables sessionVars queryVars syntheticVars cursorVars) =
J.object
[ "session" J..= sessionVars,
"query" J..= queryVars,
"synthetic" J..= syntheticVars,
"cursor" J..= cursorVars
]
-- These types exist only to use the Postgres array encoding.
newtype CohortIdArray = CohortIdArray {unCohortIdArray :: [CohortId]}
deriving (Show, Eq)
instance Q.ToPrepArg CohortIdArray where
toPrepVal (CohortIdArray l) = Q.toPrepValHelper PTI.unknown encoder $ map unCohortId l
where
encoder = PE.array 2950 . PE.dimensionArray foldl' (PE.encodingArray . PE.uuid)
newtype CohortVariablesArray = CohortVariablesArray {unCohortVariablesArray :: [CohortVariables]}
deriving (Show, Eq)
instance Q.ToPrepArg CohortVariablesArray where
toPrepVal (CohortVariablesArray l) =
Q.toPrepValHelper PTI.unknown encoder (map J.toJSON l)
where
encoder = PE.array 114 . PE.dimensionArray foldl' (PE.encodingArray . PE.json_ast)
----------------------------------------------------------------------------------------------------
-- Live query plans
-- | A self-contained, ready-to-execute subscription plan. Contains enough information
-- to find an existing poller that this can be added to /or/ to create a new poller
-- if necessary.
data SubscriptionQueryPlan (b :: BackendType) q = SubscriptionQueryPlan
{ _sqpParameterizedPlan :: !(ParameterizedSubscriptionQueryPlan b q),
_sqpSourceConfig :: !(SourceConfig b),
_sqpVariables :: !CohortVariables,
-- | We need to know if the source has a namespace so that we can wrap it around
-- the response from the DB
_sqpNamespace :: !(Maybe G.Name)
}
data ParameterizedSubscriptionQueryPlan (b :: BackendType) q = ParameterizedSubscriptionQueryPlan
{ _plqpRole :: !RoleName,
_plqpQuery :: !q
}
deriving (Show)
$(J.deriveToJSON hasuraJSON ''ParameterizedSubscriptionQueryPlan)
data SubscriptionQueryPlanExplanation = SubscriptionQueryPlanExplanation
{ _sqpeSql :: !Text,
_sqpePlan :: ![Text],
_sqpeVariables :: !CohortVariables
}
deriving (Show)
$(J.deriveToJSON hasuraJSON ''SubscriptionQueryPlanExplanation)
--------------------------------------------------------------------------
--- Streaming Subscriptions
newtype CursorVariableValues = CursorVariableValues (HashMap G.Name TxtEncodedVal)
deriving (J.FromJSON, J.ToJSON, Eq, Show)