graphql-engine/server/src-lib/Hasura/LogicalModel/Common.hs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

79 lines
2.7 KiB
Haskell
Raw Normal View History

module Hasura.LogicalModel.Common
( toFieldInfo,
columnsFromFields,
logicalModelFieldsToFieldInfo,
)
where
import Data.Bifunctor (bimap)
import Data.HashMap.Strict qualified as HashMap
import Data.HashMap.Strict.InsOrd qualified as InsOrdHashMap
import Data.Text.Extended (ToTxt (toTxt))
import Hasura.LogicalModel.NullableScalarType (NullableScalarType (..))
import Hasura.LogicalModel.Types (LogicalModelField (..), LogicalModelType (..), LogicalModelTypeScalar (..))
import Hasura.Prelude
import Hasura.RQL.Types.Backend (Backend (..))
Nested array support for Data Connectors Backend and MongoDB ## Description This change adds support for querying into nested arrays in Data Connector agents that support such a concept (currently MongoDB). ### DC API changes - New API type `ColumnType` which allows representing the type of a "column" as either a scalar type, an object reference or an array of `ColumnType`s. This recursive definition allows arbitrary nesting of arrays of types. - The `type` fields in the API types `ColumnInfo` and `ColumnInsertSchema` now take a `ColumnType` instead of a `ScalarType`. - To ensure backwards compatibility, a `ColumnType` representing a scalar serialises and deserialises to the same representation as `ScalarType`. - In queries, the `Field` type now has a new constructor `NestedArrayField`. This contains a nested `Field` along with optional `limit`, `offset`, `where` and `order_by` arguments. (These optional arguments are not yet used by either HGE or the MongoDB agent.) ### MongoDB Haskell agent changes - The `/schema` endpoint will now recognise arrays within the JSON validation schema and generate corresponding arrays in the DC schema. - The `/query` endpoint will now handle `NestedArrayField`s within queries (although it does not yet handle `limit`, `offset`, `where` and `order_by`). ### HGE server changes - The `Backend` type class adds a new type family `XNestedArrays b` to enable nested arrays on a per-backend basis (currently enabled only for the `DataConnector` backend. - Within `RawColumnInfo` the column type is now represented by a new type `RawColumnType b` which mirrors the shape of the DC API `ColumnType`, but uses `XNestedObjects b` and `XNestedArrays b` type families to allow turning nested object and array supports on or off for a particular backend. In the `DataConnector` backend `API.CustomType` is converted into `RawColumnInfo 'DataConnector` while building the schema. - In the next stage of schema building, the `RawColumnInfo` is converted into a `StructuredColumnInfo` which allows us to represent the three different types of columns: scalar, object and array. TODO: the `StructuredColumnInfo` looks very similar to the Logical Model types. The main difference is that it uses the `XNestedObjects` and `XNestedArrays` type families. We should be able to combine these two representations. - The `StructuredColumnInfo` is then placed into a `FIColumn` `FieldInfo`. This involved some refactoring of `FieldInfo` as I had previously split out `FINestedObject` into a separate constructor. However it works out better to represent all "column" fields (i.e. scalar, object and array) using `FIColumn` as this make it easier to implement permission checking correctly. This is the reason the `StructuredColumnInfo` was needed. - Next, the `FieldInfo` are used to generate `FieldParser`s. We add a new constructor to `AnnFieldG` for `AFNestedArray`. An `AFNestedArray` field parser can contain either a simple array selection or an array aggregate. Simple array `FieldParsers` are currently limited to subfield selection. We will add support for limit, offset, where and order_by in a future PR. We also don't yet generate array aggregate `FieldParsers. - The new `AFNestedArray` field is handled by the `QueryPlan` module in the `DataConnector` backend. There we generate an `API.NestedArrayField` from the AFNestedArray. We also handle nested arrays when reshaping the response from the DC agent. ## Limitations - Support for limit, offset, filter (where) and order_by is not yet fully implemented, although it should not be hard to add this - Support for aggregations on nested arrays is not yet fully implemented - Permissions involving nested arrays (and objects) not yet implemented - This should be integrated with Logical Model types, but that will happen in a separate PR PR-URL: https://github.com/hasura/graphql-engine-mono/pull/9149 GitOrigin-RevId: 0e7b71a994fc1d2ca1ef73bfe7b96e95b5328531
2023-05-24 11:00:59 +03:00
import Hasura.RQL.Types.Column (ColumnInfo (..), ColumnMutability (..), ColumnType (..), StructuredColumnInfo (..), fromCol)
import Hasura.Table.Cache (FieldInfo (..), FieldInfoMap)
import Language.GraphQL.Draft.Syntax qualified as G
columnsFromFields ::
InsOrdHashMap.InsOrdHashMap k (LogicalModelField b) ->
InsOrdHashMap.InsOrdHashMap k (NullableScalarType b)
columnsFromFields =
InsOrdHashMap.mapMaybe
( \case
LogicalModelField
{ lmfType =
LogicalModelTypeScalar
( LogicalModelTypeScalarC
{ lmtsScalar = nstType,
lmtsNullable = nstNullable
}
),
lmfDescription = nstDescription
} ->
Just (NullableScalarType {..})
_ -> Nothing
)
toFieldInfo :: forall b. (Backend b) => InsOrdHashMap.InsOrdHashMap (Column b) (NullableScalarType b) -> Maybe [FieldInfo b]
toFieldInfo fields =
traverseWithIndex
(\i -> fmap FIColumn . logicalModelToColumnInfo i)
(InsOrdHashMap.toList fields)
traverseWithIndex :: (Applicative m) => (Int -> aa -> m bb) -> [aa] -> m [bb]
traverseWithIndex f = zipWithM f [0 ..]
Nested array support for Data Connectors Backend and MongoDB ## Description This change adds support for querying into nested arrays in Data Connector agents that support such a concept (currently MongoDB). ### DC API changes - New API type `ColumnType` which allows representing the type of a "column" as either a scalar type, an object reference or an array of `ColumnType`s. This recursive definition allows arbitrary nesting of arrays of types. - The `type` fields in the API types `ColumnInfo` and `ColumnInsertSchema` now take a `ColumnType` instead of a `ScalarType`. - To ensure backwards compatibility, a `ColumnType` representing a scalar serialises and deserialises to the same representation as `ScalarType`. - In queries, the `Field` type now has a new constructor `NestedArrayField`. This contains a nested `Field` along with optional `limit`, `offset`, `where` and `order_by` arguments. (These optional arguments are not yet used by either HGE or the MongoDB agent.) ### MongoDB Haskell agent changes - The `/schema` endpoint will now recognise arrays within the JSON validation schema and generate corresponding arrays in the DC schema. - The `/query` endpoint will now handle `NestedArrayField`s within queries (although it does not yet handle `limit`, `offset`, `where` and `order_by`). ### HGE server changes - The `Backend` type class adds a new type family `XNestedArrays b` to enable nested arrays on a per-backend basis (currently enabled only for the `DataConnector` backend. - Within `RawColumnInfo` the column type is now represented by a new type `RawColumnType b` which mirrors the shape of the DC API `ColumnType`, but uses `XNestedObjects b` and `XNestedArrays b` type families to allow turning nested object and array supports on or off for a particular backend. In the `DataConnector` backend `API.CustomType` is converted into `RawColumnInfo 'DataConnector` while building the schema. - In the next stage of schema building, the `RawColumnInfo` is converted into a `StructuredColumnInfo` which allows us to represent the three different types of columns: scalar, object and array. TODO: the `StructuredColumnInfo` looks very similar to the Logical Model types. The main difference is that it uses the `XNestedObjects` and `XNestedArrays` type families. We should be able to combine these two representations. - The `StructuredColumnInfo` is then placed into a `FIColumn` `FieldInfo`. This involved some refactoring of `FieldInfo` as I had previously split out `FINestedObject` into a separate constructor. However it works out better to represent all "column" fields (i.e. scalar, object and array) using `FIColumn` as this make it easier to implement permission checking correctly. This is the reason the `StructuredColumnInfo` was needed. - Next, the `FieldInfo` are used to generate `FieldParser`s. We add a new constructor to `AnnFieldG` for `AFNestedArray`. An `AFNestedArray` field parser can contain either a simple array selection or an array aggregate. Simple array `FieldParsers` are currently limited to subfield selection. We will add support for limit, offset, where and order_by in a future PR. We also don't yet generate array aggregate `FieldParsers. - The new `AFNestedArray` field is handled by the `QueryPlan` module in the `DataConnector` backend. There we generate an `API.NestedArrayField` from the AFNestedArray. We also handle nested arrays when reshaping the response from the DC agent. ## Limitations - Support for limit, offset, filter (where) and order_by is not yet fully implemented, although it should not be hard to add this - Support for aggregations on nested arrays is not yet fully implemented - Permissions involving nested arrays (and objects) not yet implemented - This should be integrated with Logical Model types, but that will happen in a separate PR PR-URL: https://github.com/hasura/graphql-engine-mono/pull/9149 GitOrigin-RevId: 0e7b71a994fc1d2ca1ef73bfe7b96e95b5328531
2023-05-24 11:00:59 +03:00
logicalModelToColumnInfo :: forall b. (Backend b) => Int -> (Column b, NullableScalarType b) -> Maybe (StructuredColumnInfo b)
logicalModelToColumnInfo i (column, NullableScalarType {..}) = do
name <- G.mkName (toTxt column)
pure
$
Nested array support for Data Connectors Backend and MongoDB ## Description This change adds support for querying into nested arrays in Data Connector agents that support such a concept (currently MongoDB). ### DC API changes - New API type `ColumnType` which allows representing the type of a "column" as either a scalar type, an object reference or an array of `ColumnType`s. This recursive definition allows arbitrary nesting of arrays of types. - The `type` fields in the API types `ColumnInfo` and `ColumnInsertSchema` now take a `ColumnType` instead of a `ScalarType`. - To ensure backwards compatibility, a `ColumnType` representing a scalar serialises and deserialises to the same representation as `ScalarType`. - In queries, the `Field` type now has a new constructor `NestedArrayField`. This contains a nested `Field` along with optional `limit`, `offset`, `where` and `order_by` arguments. (These optional arguments are not yet used by either HGE or the MongoDB agent.) ### MongoDB Haskell agent changes - The `/schema` endpoint will now recognise arrays within the JSON validation schema and generate corresponding arrays in the DC schema. - The `/query` endpoint will now handle `NestedArrayField`s within queries (although it does not yet handle `limit`, `offset`, `where` and `order_by`). ### HGE server changes - The `Backend` type class adds a new type family `XNestedArrays b` to enable nested arrays on a per-backend basis (currently enabled only for the `DataConnector` backend. - Within `RawColumnInfo` the column type is now represented by a new type `RawColumnType b` which mirrors the shape of the DC API `ColumnType`, but uses `XNestedObjects b` and `XNestedArrays b` type families to allow turning nested object and array supports on or off for a particular backend. In the `DataConnector` backend `API.CustomType` is converted into `RawColumnInfo 'DataConnector` while building the schema. - In the next stage of schema building, the `RawColumnInfo` is converted into a `StructuredColumnInfo` which allows us to represent the three different types of columns: scalar, object and array. TODO: the `StructuredColumnInfo` looks very similar to the Logical Model types. The main difference is that it uses the `XNestedObjects` and `XNestedArrays` type families. We should be able to combine these two representations. - The `StructuredColumnInfo` is then placed into a `FIColumn` `FieldInfo`. This involved some refactoring of `FieldInfo` as I had previously split out `FINestedObject` into a separate constructor. However it works out better to represent all "column" fields (i.e. scalar, object and array) using `FIColumn` as this make it easier to implement permission checking correctly. This is the reason the `StructuredColumnInfo` was needed. - Next, the `FieldInfo` are used to generate `FieldParser`s. We add a new constructor to `AnnFieldG` for `AFNestedArray`. An `AFNestedArray` field parser can contain either a simple array selection or an array aggregate. Simple array `FieldParsers` are currently limited to subfield selection. We will add support for limit, offset, where and order_by in a future PR. We also don't yet generate array aggregate `FieldParsers. - The new `AFNestedArray` field is handled by the `QueryPlan` module in the `DataConnector` backend. There we generate an `API.NestedArrayField` from the AFNestedArray. We also handle nested arrays when reshaping the response from the DC agent. ## Limitations - Support for limit, offset, filter (where) and order_by is not yet fully implemented, although it should not be hard to add this - Support for aggregations on nested arrays is not yet fully implemented - Permissions involving nested arrays (and objects) not yet implemented - This should be integrated with Logical Model types, but that will happen in a separate PR PR-URL: https://github.com/hasura/graphql-engine-mono/pull/9149 GitOrigin-RevId: 0e7b71a994fc1d2ca1ef73bfe7b96e95b5328531
2023-05-24 11:00:59 +03:00
-- TODO(dmoverton): handle object and array columns
SCIScalarColumn
$ ColumnInfo
{ ciColumn = column,
ciName = name,
ciPosition = i,
ciType = ColumnScalar nstType,
ciIsNullable = nstNullable,
ciDescription = G.Description <$> nstDescription,
ciMutability = ColumnMutability {_cmIsInsertable = False, _cmIsUpdatable = False}
}
logicalModelFieldsToFieldInfo ::
forall b.
(Backend b) =>
InsOrdHashMap.InsOrdHashMap (Column b) (LogicalModelField b) ->
FieldInfoMap (FieldInfo b)
logicalModelFieldsToFieldInfo =
HashMap.fromList
. fmap (bimap (fromCol @b) FIColumn)
. fromMaybe mempty
. traverseWithIndex
(\i (column, lmf) -> (,) column <$> logicalModelToColumnInfo i (column, lmf))
. InsOrdHashMap.toList
. columnsFromFields