graphql-engine/server/src-lib/Hasura/Incremental/Select.hs

145 lines
5.0 KiB
Haskell
Raw Normal View History

{-# OPTIONS_HADDOCK not-home #-}
module Hasura.Incremental.Select
( Select (..),
ConstS (..),
selectKey,
FieldS (..),
UniqueS,
newUniqueS,
DMapS (..),
-- * Re-exports
GEq (..),
GCompare (..),
GOrdering (..),
(:~:) (..),
)
where
import Control.Monad.Unique
import Data.Dependent.Map qualified as DM
import Data.GADT.Compare
import Data.HashMap.Strict qualified as M
import Data.Kind
import Data.Proxy (Proxy (..))
import Data.Type.Equality
import GHC.OverloadedLabels (IsLabel (..))
import GHC.Records (HasField (..))
import GHC.TypeLits (KnownSymbol, sameSymbol, symbolVal)
import Hasura.Prelude
import Unsafe.Coerce (unsafeCoerce)
-- | The 'Select' class provides a way to access subparts of a product type using a reified
-- 'Selector'. A @'Selector' a b@ is essentially a function from @a@ to @b@, and indeed 'select'
-- converts a 'Selector' to such a function. However, unlike functions, 'Selector's can be compared
-- for equality using 'GEq' and ordered using 'GCompare'.
--
-- This is useful to implement dependency tracking, since its possible to track in a reified form
-- exactly which parts of a data structure are used.
--
-- Instances of 'Select' can be automatically derived for record types (just define an empty
-- instance). The instance uses the magical 'HasField' constraints, and 'Selector's for the type can
-- be written using @OverloadedLabels@.
class (GCompare (Selector a)) => Select a where
type Selector a :: Type -> Type
select :: Selector a b -> a -> b
type Selector r = FieldS r
default select :: Selector a ~ FieldS a => Selector a b -> a -> b
select (FieldS (_ :: Proxy s)) = getField @s
instance (Eq k, Ord k, Hashable k) => Select (HashMap k v) where
type Selector (HashMap k v) = ConstS k (Maybe v)
select (ConstS k) = M.lookup k
instance (GCompare k) => Select (DM.DMap k f) where
type Selector (DM.DMap k f) = DMapS k f
select (DMapS k) = DM.lookup k
-- | The constant selector, which is useful for representing selectors into data structures where
-- all fields have the same type. Matching on a value of type @'ConstS' k a b@ causes @a@ and @b@ to
-- unify, effectively “pinning” @b@ to @a@.
data ConstS k a b where
ConstS :: !k -> ConstS k a a
selectKey :: (Select a, Selector a ~ ConstS k v) => k -> a -> v
selectKey = select . ConstS
instance (Eq k) => GEq (ConstS k a) where
ConstS a `geq` ConstS b
| a == b = Just Refl
| otherwise = Nothing
instance (Ord k) => GCompare (ConstS k a) where
ConstS a `gcompare` ConstS b = case compare a b of
LT -> GLT
EQ -> GEQ
GT -> GGT
data FieldS r a where
FieldS :: (KnownSymbol s, HasField s r a) => !(Proxy s) -> FieldS r a
instance (KnownSymbol s, HasField s r a) => IsLabel s (FieldS r a) where
fromLabel = FieldS (Proxy @s)
instance GEq (FieldS r) where
FieldS a `geq` FieldS b = case sameSymbol a b of
-- If two fields of the same record have the same name, then their fields fundamentally must
-- have the same type! However, unfortunately, `HasField` constraints use a functional
-- dependency to enforce this rather than a type family, and functional dependencies dont
-- provide evidence, so we have to use `unsafeCoerce` here. Yuck!
Just Refl -> Just (unsafeCoerce Refl)
Nothing -> Nothing
instance GCompare (FieldS r) where
FieldS a `gcompare` FieldS b = case sameSymbol a b of
-- See note about `HasField` and `unsafeCoerce` above.
Just Refl -> unsafeCoerce GEQ
Nothing
| symbolVal a < symbolVal b -> GLT
| otherwise -> GGT
-- | A 'UniqueS' is, as the name implies, a globally-unique 'Selector', which can be created using
-- 'newUniqueS'. If a value of type @'UniqueS' a@ is found to be equal (via 'geq') with another
-- value of type @'UniqueS' b@, then @a@ and @b@ must be the same type. This effectively allows the
-- creation of a dynamically-extensible sum type, where new constructors can be created at runtime
-- using 'newUniqueS'.
type role UniqueS nominal
newtype UniqueS a = UniqueS Unique
deriving (Eq)
newUniqueS :: (MonadUnique m) => m (UniqueS a)
newUniqueS = UniqueS <$> newUnique
{-# INLINE newUniqueS #-}
instance GEq UniqueS where
UniqueS a `geq` UniqueS b
-- This use of `unsafeCoerce` is safe as long as we dont export the constructor of `UniqueS`.
-- Because a `UniqueS` is, in fact, unique, then we can be certain that equality of 'UniqueS's
-- implies equality of their argument types.
| a == b = Just (unsafeCoerce Refl)
| otherwise = Nothing
instance GCompare UniqueS where
UniqueS a `gcompare` UniqueS b = case compare a b of
LT -> GLT
-- See note about `unsafeCoerce` above.
EQ -> unsafeCoerce GEQ
GT -> GGT
data DMapS k f a where
DMapS :: !(k a) -> DMapS k f (Maybe (f a))
instance (GEq k) => GEq (DMapS k f) where
DMapS a `geq` DMapS b = case a `geq` b of
Just Refl -> Just Refl
Nothing -> Nothing
instance (GCompare k) => GCompare (DMapS k f) where
DMapS a `gcompare` DMapS b = case a `gcompare` b of
GLT -> GLT
GEQ -> GEQ
GGT -> GGT