mirror of
https://github.com/hasura/graphql-engine.git
synced 2025-01-05 14:27:59 +03:00
517 lines
16 KiB
Python
517 lines
16 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
# Avoid tkinter dependency
|
||
|
import matplotlib
|
||
|
matplotlib.use('agg')
|
||
|
|
||
|
import dash
|
||
|
from dash.dependencies import Input, Output, State
|
||
|
import dash_core_components as dcc
|
||
|
import dash_bootstrap_components as dbc
|
||
|
import dash_html_components as html
|
||
|
from urllib.request import urlopen
|
||
|
import pandas as pd
|
||
|
import json
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.patches as mpatches
|
||
|
import matplotlib.ticker as ticker
|
||
|
import seaborn as sns
|
||
|
from io import BytesIO
|
||
|
import sys
|
||
|
import argparse
|
||
|
import base64
|
||
|
from urllib.parse import urlparse
|
||
|
import boto3
|
||
|
|
||
|
def as_pairs(l, pair_size=2):
|
||
|
if len(l) < pair_size:
|
||
|
return [l]
|
||
|
else:
|
||
|
return [l[0:pair_size]] + as_pairs(l[pair_size:], pair_size)
|
||
|
|
||
|
|
||
|
def get_scenario_results(results, scenarios):
|
||
|
out_results = []
|
||
|
for snro in scenarios:
|
||
|
def allowed_value(x):
|
||
|
for k in snro:
|
||
|
if x[k] != snro[k]:
|
||
|
return False
|
||
|
return True
|
||
|
req_results = [x for x in results if allowed_value(x)]
|
||
|
out_results.append((snro, req_results))
|
||
|
return out_results
|
||
|
|
||
|
def throughput_data(max_rps_results, scenarios):
|
||
|
results = get_scenario_results(max_rps_results, scenarios)
|
||
|
data = []
|
||
|
for (snro, req_results) in results:
|
||
|
ver_info = snro['version'] or snro['docker_image'].split(':')[1]
|
||
|
if req_results:
|
||
|
data.append({
|
||
|
'version': ver_info,
|
||
|
'query name': snro['query_name'],
|
||
|
'max throughput': float(req_results[0]['max_rps'])
|
||
|
})
|
||
|
return pd.DataFrame(data)
|
||
|
|
||
|
def throughput_figure(df):
|
||
|
sns.set_style("whitegrid")
|
||
|
fig, ax = plt.subplots(figsize=(14,6))
|
||
|
uniq_versions = set(df['version'])
|
||
|
if len(uniq_versions) >1:
|
||
|
sns.lineplot(x='version', y='max throughput', hue='query name', data=df, ax=ax)
|
||
|
else:
|
||
|
sns.barplot(x='version', y='max throughput', hue='query name', data=df, ax=ax)
|
||
|
ax.grid()
|
||
|
ax.set(
|
||
|
xlabel='Version/Docker image',
|
||
|
ylabel='Throughput (req/s)'
|
||
|
)
|
||
|
ymax = round(max(df['max throughput'])*1.05)
|
||
|
plt.ylim(0, ymax)
|
||
|
out_fig = gen_plot_figure_data(plt)
|
||
|
plt.close()
|
||
|
return out_fig
|
||
|
|
||
|
def gen_plot_figure_data(plt):
|
||
|
with BytesIO() as out_img:
|
||
|
plt.savefig(out_img, format='png', bbox_inches='tight', dpi=100)
|
||
|
out_img.seek(0)
|
||
|
encoded = base64.b64encode(out_img.read()).decode('ascii').replace('\n','')
|
||
|
return "data:image/png;base64,{}".format(encoded)
|
||
|
|
||
|
|
||
|
def uri_readlines(uri):
|
||
|
print('Latency file:', uri)
|
||
|
p = urlparse(uri)
|
||
|
if p.scheme == 'file':
|
||
|
return urlopen(uri).readlines()
|
||
|
elif p.scheme == 's3':
|
||
|
s3 = boto3.resource('s3')
|
||
|
obj = s3.Object(bucket_name=p.netloc, key=p.path.lstrip('/'))
|
||
|
with BytesIO() as data:
|
||
|
obj.download_fileobj(data)
|
||
|
return data.getvalue().splitlines()
|
||
|
|
||
|
|
||
|
def violin_plot_data(latency_results, scenarios):
|
||
|
y_label = 'latency (ms)'
|
||
|
x_label = 'version'
|
||
|
category_label = 'req/sec'
|
||
|
data = []
|
||
|
results = get_scenario_results(latency_results, scenarios)
|
||
|
for (snro, req_results) in results:
|
||
|
ver_info = snro['version'] or snro['docker_image'].split(':')[1]
|
||
|
if req_results:
|
||
|
latencies = uri_readlines(req_results[0]['latencies_uri'])
|
||
|
for x in latencies:
|
||
|
if isinstance(x, bytes):
|
||
|
x = x.decode()
|
||
|
val_ms = float(x)/1000.0
|
||
|
data.append({
|
||
|
y_label: val_ms,
|
||
|
x_label: ver_info,
|
||
|
category_label: snro['requests_per_sec']
|
||
|
})
|
||
|
return pd.DataFrame(data)
|
||
|
|
||
|
|
||
|
def violin_plot_figure(df):
|
||
|
y_label = 'latency (ms)'
|
||
|
x_label = 'version'
|
||
|
category_label = 'req/sec'
|
||
|
sns.set_style("whitegrid")
|
||
|
plt.figure(figsize=(14,6))
|
||
|
|
||
|
# All points latency plot
|
||
|
ax = sns.stripplot(
|
||
|
x=x_label, y=y_label, hue=category_label,
|
||
|
data=df, palette=sns.color_palette(["#AAAAAA"]),
|
||
|
jitter=0.40, size=2.2, dodge=True)
|
||
|
plt.setp(ax.collections, zorder=-1000)
|
||
|
|
||
|
# Plot percentiles using boxplot whisker caps:
|
||
|
percentiles = [(99.9, 'red'), (99, 'blue'), (95, 'green')]
|
||
|
for pctl, color in percentiles:
|
||
|
ax = sns.boxplot(
|
||
|
x=x_label, y=y_label, hue=category_label, data=df,
|
||
|
showfliers=False, showbox=False,
|
||
|
# Showing bottom percentiles just seemed to add visual noise:
|
||
|
whis=[0, pctl],
|
||
|
capprops={'color': color, 'linewidth': 1},
|
||
|
# hide all but cap:
|
||
|
whiskerprops={'linewidth': 0}
|
||
|
)
|
||
|
# Keep boxplots from adding nonsense to legend:
|
||
|
handles, _ = ax.get_legend_handles_labels()
|
||
|
for h in handles:
|
||
|
h.remove()
|
||
|
|
||
|
# This will get overwritten; add back below:
|
||
|
pctl_legend = plt.legend(
|
||
|
title='Percentile markers', loc='upper left',
|
||
|
handles=[
|
||
|
mpatches.Patch(color=c, label=str(pctl)+"th")
|
||
|
for pctl, c in percentiles
|
||
|
] +
|
||
|
[mpatches.Patch(color="black", label='median')]
|
||
|
)
|
||
|
|
||
|
# See: https://seaborn.pydata.org/generated/seaborn.violinplot.html
|
||
|
sns.violinplot(
|
||
|
x=x_label, y=y_label, hue=category_label, data=df, palette="Set1",
|
||
|
scale_hue=True,
|
||
|
# All violins get the same area (number of samples may differ):
|
||
|
scale="area",
|
||
|
# More granular violins:
|
||
|
bw=.02,
|
||
|
# This seems to wreck things:
|
||
|
# width=1.5,
|
||
|
linewidth=0,
|
||
|
# inner="quartile"
|
||
|
)
|
||
|
|
||
|
# Add back percentile legend:
|
||
|
ax.add_artist(pctl_legend)
|
||
|
|
||
|
approx_target_y_tics = 20
|
||
|
|
||
|
ax.yaxis.set_major_locator(ticker.MaxNLocator(approx_target_y_tics))
|
||
|
|
||
|
ax.yaxis.set_major_formatter(ticker.FuncFormatter(y_fmt))
|
||
|
|
||
|
plt.ylim(0, None)
|
||
|
out_fig = gen_plot_figure_data(plt)
|
||
|
plt.close()
|
||
|
return out_fig
|
||
|
|
||
|
def hdrhistogram_figure(df):
|
||
|
sns.set_style("whitegrid")
|
||
|
fig, ax = plt.subplots(figsize=(14,6))
|
||
|
sns.lineplot(x='percentile', y='latency', hue='version',
|
||
|
data=df, ax=ax)
|
||
|
ax.grid()
|
||
|
ax.set(
|
||
|
xlabel='Percentile',
|
||
|
ylabel='Latency (ms)'
|
||
|
)
|
||
|
ax.set_xscale('logit')
|
||
|
ticks = [0.25, 0.5, 0.9, 0.99, 0.999, 0.9999, 0.99999]
|
||
|
plt.xticks(ticks)
|
||
|
majors = ['25%', '50%', '90%', '99%' , '99.9%', '99.99%']
|
||
|
ax.xaxis.set_major_formatter(ticker.FixedFormatter(majors))
|
||
|
ax.xaxis.set_minor_formatter(ticker.NullFormatter())
|
||
|
out_fig = gen_plot_figure_data(plt)
|
||
|
plt.close()
|
||
|
return out_fig
|
||
|
|
||
|
|
||
|
def hdrhistogram_data(latency_results, scenarios):
|
||
|
results = get_scenario_results(latency_results, scenarios)
|
||
|
data = []
|
||
|
for (snro, req_results) in results:
|
||
|
ver_info = snro['version'] or snro['docker_image'].split(':')[1]
|
||
|
if req_results:
|
||
|
histogram = req_results[0]['latency_histogram']
|
||
|
for e in histogram:
|
||
|
data.append({
|
||
|
'latency': float(e['latency']),
|
||
|
'percentile': float(e['percentile']),
|
||
|
'req/sec': snro['requests_per_sec'],
|
||
|
'version': ver_info
|
||
|
})
|
||
|
return pd.DataFrame(data)
|
||
|
|
||
|
|
||
|
# Human friendly Y labels.
|
||
|
# Copy-pasta: https://stackoverflow.com/a/40573071
|
||
|
def y_fmt(y, pos):
|
||
|
decades = [1e9, 1e6, 1e3, 1e0, 1e-3, 1e-6, 1e-9 ]
|
||
|
suffix = ["G", "M", "k", "" , "m" , "u", "n"]
|
||
|
if y == 0:
|
||
|
return str(0)
|
||
|
for i, d in enumerate(decades):
|
||
|
if np.abs(y) >=d:
|
||
|
val = y/float(d)
|
||
|
signf = len(str(val).split(".")[1])
|
||
|
if signf == 0:
|
||
|
return '{val:d} {suffix}'.format(val=int(val), suffix=suffix[i])
|
||
|
else:
|
||
|
if signf == 1:
|
||
|
if str(val).split(".")[1] == "0":
|
||
|
return '{val:d} {suffix}'.format(val=int(round(val)), suffix=suffix[i])
|
||
|
tx = "{"+"val:.{signf}f".format(signf = signf) +"} {suffix}"
|
||
|
return tx.format(val=val, suffix=suffix[i])
|
||
|
return y
|
||
|
|
||
|
def run_dash_server(bench_results):
|
||
|
latency_results = bench_results['latency']
|
||
|
max_rps_results = bench_results['max_rps']
|
||
|
latency_results.sort(key=lambda x : x['version'] or x['docker_image'])
|
||
|
|
||
|
app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||
|
|
||
|
uniq_queries = list( set( [ x['query_name'] for x in latency_results ] ) )
|
||
|
children = []
|
||
|
|
||
|
|
||
|
rows = []
|
||
|
plot_types = ['latency histogram','latency violins', 'max throughput']
|
||
|
plots_filters_1 = [
|
||
|
dbc.Col([
|
||
|
html.Label('Plot type'),
|
||
|
dcc.Dropdown(
|
||
|
id='plot-type',
|
||
|
options=[{'label':q, 'value': q} for q in plot_types],
|
||
|
value= plot_types[2]
|
||
|
)
|
||
|
], width=2),
|
||
|
dbc.Col([
|
||
|
html.Label('Query'),
|
||
|
dcc.Dropdown(
|
||
|
id='query-name',
|
||
|
options=[{'label':q, 'value': q} for q in uniq_queries],
|
||
|
value= uniq_queries[:min(len(uniq_queries), 4)],
|
||
|
multi=True
|
||
|
)
|
||
|
]),
|
||
|
dbc.Col(html.Div(
|
||
|
children=[
|
||
|
html.Label('Requests/sec'),
|
||
|
dcc.Dropdown(id='rps', multi=False)
|
||
|
|
||
|
],
|
||
|
id='rps-div'
|
||
|
), width=3)
|
||
|
]
|
||
|
rows.append(dbc.Row(plots_filters_1))
|
||
|
|
||
|
plots_filter_2 = [
|
||
|
dbc.Col([
|
||
|
html.Label('version(s)/docker_image(s)'),
|
||
|
dcc.Dropdown(
|
||
|
id='ver',
|
||
|
multi=True
|
||
|
)
|
||
|
])
|
||
|
]
|
||
|
rows.append(dbc.Row(plots_filter_2))
|
||
|
|
||
|
graph = dbc.Col(
|
||
|
html.Div([html.Img(id = 'graph', src = '')], id='plot_div')
|
||
|
)
|
||
|
rows.append(dbc.Row(graph))
|
||
|
|
||
|
children.append(html.Div(dbc.Container(rows)))
|
||
|
|
||
|
app.layout = html.Div(children=children)
|
||
|
|
||
|
def as_list(x):
|
||
|
if not isinstance(x, list):
|
||
|
return [x]
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
@app.callback(
|
||
|
Output('ver', 'options'),
|
||
|
[ Input('plot-type', 'value'), Input('query-name', 'value'), Input('rps', 'value') ]
|
||
|
)
|
||
|
def updateVerOptions(plot_type, query_names, rps_list):
|
||
|
query_names = as_list(query_names)
|
||
|
rps_list = as_list(rps_list)
|
||
|
relvnt_q = [
|
||
|
x for x in latency_results
|
||
|
if x['query_name'] in query_names and
|
||
|
(x['requests_per_sec'] in rps_list or plot_type == 'max throughput')
|
||
|
]
|
||
|
uniq_vers = list(set([
|
||
|
(x['version'], x['docker_image'])
|
||
|
for x in relvnt_q
|
||
|
]))
|
||
|
print("Updating version options to", uniq_vers)
|
||
|
return [
|
||
|
{
|
||
|
'label': x[0] or x[1],
|
||
|
'value': json.dumps({
|
||
|
'version': x[0],
|
||
|
|
||
|
'docker_image': x[1]
|
||
|
})
|
||
|
}
|
||
|
for x in uniq_vers
|
||
|
]
|
||
|
|
||
|
@app.callback(
|
||
|
Output('ver', 'value'),
|
||
|
[ Input('plot-type', 'value'), Input('ver', 'options') ],
|
||
|
[ State('ver', 'value') ]
|
||
|
)
|
||
|
def updateVerValue(plot_types, options, vers):
|
||
|
print('Updating version value, options', options)
|
||
|
return updateMultiValue(options, vers)
|
||
|
|
||
|
def updateMultiValue(options, vals, def_list_size=2):
|
||
|
vals = as_list(vals)
|
||
|
new_vals = []
|
||
|
allowed_vals = [ x['value'] for x in options]
|
||
|
def_val_size = min(def_list_size, len(allowed_vals))
|
||
|
default_vals = allowed_vals[:def_val_size]
|
||
|
if not vals:
|
||
|
return default_vals
|
||
|
for val in vals:
|
||
|
if val in allowed_vals:
|
||
|
new_vals.append(val)
|
||
|
if new_vals:
|
||
|
return new_vals
|
||
|
else:
|
||
|
return default_vals
|
||
|
|
||
|
def updateSingleValue(options, val):
|
||
|
allowed_vals = [ x['value'] for x in options]
|
||
|
if val and val in allowed_vals:
|
||
|
return val
|
||
|
elif allowed_vals:
|
||
|
return allowed_vals[0]
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
# Change queries to multi for throughput plot
|
||
|
@app.callback(
|
||
|
Output('query-name', 'multi'),
|
||
|
[ Input('plot-type', 'value') ],
|
||
|
)
|
||
|
def query_dropdown_multi(plot_type):
|
||
|
return plot_type == 'max throughput'
|
||
|
|
||
|
@app.callback(
|
||
|
Output('query-name', 'value'),
|
||
|
[ Input('plot-type', 'value'), Input('query-name', 'options'), Input('query-name', 'multi') ],
|
||
|
[ State('query-name', 'value') ]
|
||
|
)
|
||
|
def updateQueryValue(plot_type, options, multi, query_names):
|
||
|
if plot_type == 'max throughput':
|
||
|
return updateMultiValue(options, query_names, 4)
|
||
|
else:
|
||
|
return updateSingleValue(options, query_names)
|
||
|
|
||
|
|
||
|
@app.callback(
|
||
|
Output('rps', 'options'),
|
||
|
[ Input('plot-type', 'value'), Input('query-name', 'value') ]
|
||
|
)
|
||
|
def updateRPSOptions(plot_type, query_name):
|
||
|
relvnt_q = [ x for x in latency_results if x['query_name'] == query_name ]
|
||
|
rps = list( set( [x['requests_per_sec'] for x in relvnt_q ] ) )
|
||
|
return [
|
||
|
{
|
||
|
'label': str(x),
|
||
|
'value': x
|
||
|
} for x in sorted(rps)
|
||
|
]
|
||
|
|
||
|
@app.callback(
|
||
|
Output('rps', 'value'),
|
||
|
[ Input('plot-type', 'value'), Input('rps', 'options') ],
|
||
|
[ State('rps', 'value') ]
|
||
|
)
|
||
|
def updateRPSValue(plot_type, options, rps):
|
||
|
if plot_type == 'latency histogram':
|
||
|
return updateSingleValue(options, rps)
|
||
|
else:
|
||
|
rps = as_list(rps)
|
||
|
return updateMultiValue(options, rps)
|
||
|
|
||
|
# Change RPS to multi for violin plot
|
||
|
@app.callback(
|
||
|
Output('rps', 'multi'),
|
||
|
[ Input('plot-type', 'value') ],
|
||
|
)
|
||
|
def rps_dropdown_multi(plot_type):
|
||
|
return plot_type == 'latency violins'
|
||
|
|
||
|
# Hide RPS dropdown if plot type is throughput
|
||
|
@app.callback(
|
||
|
Output('rps-div', 'style'),
|
||
|
[ Input('plot-type', 'value') ],
|
||
|
)
|
||
|
def rps_dropdown_style(plot_type):
|
||
|
if plot_type == 'max throughput':
|
||
|
return { 'display': 'none' }
|
||
|
else:
|
||
|
return {'display': 'block'}
|
||
|
|
||
|
def get_hdrhistogram_figure(scenarios):
|
||
|
df = hdrhistogram_data(latency_results, scenarios)
|
||
|
return hdrhistogram_figure(df)
|
||
|
|
||
|
def get_violin_figure(scenarios):
|
||
|
df = violin_plot_data(latency_results, scenarios)
|
||
|
return violin_plot_figure(df)
|
||
|
|
||
|
def get_throughput_figure(scenarios):
|
||
|
df = throughput_data(max_rps_results, scenarios)
|
||
|
return throughput_figure(df)
|
||
|
|
||
|
@app.callback(
|
||
|
Output('graph', 'src'),
|
||
|
[
|
||
|
Input('plot-type', 'value'),
|
||
|
Input('query-name', 'value'),
|
||
|
Input('rps', 'value'),
|
||
|
Input('ver', 'value')
|
||
|
]
|
||
|
)
|
||
|
def updateGraph(plot_type, query_name, rps_list, vers):
|
||
|
rps_list = as_list(rps_list)
|
||
|
def latency_scenarios():
|
||
|
return [
|
||
|
{
|
||
|
'query_name': query_name,
|
||
|
'requests_per_sec': rps,
|
||
|
**json.loads(v)
|
||
|
}
|
||
|
for v in set(vers)
|
||
|
for rps in set(rps_list)
|
||
|
]
|
||
|
def throughput_scenarios():
|
||
|
return [
|
||
|
{
|
||
|
'query_name': qname,
|
||
|
**json.loads(v)
|
||
|
}
|
||
|
for v in set(vers)
|
||
|
for qname in as_list(query_name)
|
||
|
]
|
||
|
if plot_type == 'max throughput':
|
||
|
scenarios = throughput_scenarios()
|
||
|
else:
|
||
|
scenarios = latency_scenarios()
|
||
|
|
||
|
|
||
|
if plot_type == 'latency histogram':
|
||
|
return get_hdrhistogram_figure(scenarios)
|
||
|
elif plot_type == 'latency violins':
|
||
|
return get_violin_figure(scenarios)
|
||
|
elif plot_type == 'max throughput':
|
||
|
return get_throughput_figure(scenarios)
|
||
|
|
||
|
app.run_server(host="127.0.0.1", debug=False)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument(
|
||
|
'--results', nargs='?', type=argparse.FileType('r'),
|
||
|
default=sys.stdin)
|
||
|
args = parser.parse_args()
|
||
|
bench_results = json.load(args.results)
|
||
|
print(bench_results)
|
||
|
|
||
|
print("=" * 20)
|
||
|
print("starting dash server for graphs")
|
||
|
|
||
|
run_dash_server(bench_results)
|