mirror of
https://github.com/hasura/graphql-engine.git
synced 2024-12-19 13:31:43 +03:00
999 lines
42 KiB
Haskell
999 lines
42 KiB
Haskell
|
{-# OPTIONS_HADDOCK not-home #-}
|
|||
|
{-# LANGUAGE AllowAmbiguousTypes #-}
|
|||
|
{-# LANGUAGE StrictData #-}
|
|||
|
{-# LANGUAGE ViewPatterns #-}
|
|||
|
|
|||
|
-- | Defines the 'Parser' type and its primitive combinators.
|
|||
|
module Hasura.GraphQL.Parser.Internal.Parser where
|
|||
|
|
|||
|
import Hasura.Prelude
|
|||
|
|
|||
|
import qualified Data.Aeson as A
|
|||
|
import qualified Data.HashMap.Strict.Extended as M
|
|||
|
import qualified Data.HashMap.Strict.InsOrd as OMap
|
|||
|
import qualified Data.HashSet as S
|
|||
|
import qualified Data.Text as T
|
|||
|
|
|||
|
import Control.Lens.Extended hiding (enum, index)
|
|||
|
import Data.Int (Int32, Int64)
|
|||
|
import Data.Scientific (toBoundedInteger)
|
|||
|
import Data.Parser.JSONPath
|
|||
|
import Data.Type.Equality
|
|||
|
import Language.GraphQL.Draft.Syntax hiding (Definition)
|
|||
|
|
|||
|
import Hasura.GraphQL.Parser.Class
|
|||
|
import Hasura.GraphQL.Parser.Collect
|
|||
|
import Hasura.GraphQL.Parser.Schema
|
|||
|
import Hasura.RQL.Types.CustomTypes
|
|||
|
import Hasura.RQL.Types.Error
|
|||
|
import Hasura.Server.Utils (englishList)
|
|||
|
import Hasura.SQL.Types
|
|||
|
import Hasura.SQL.Value
|
|||
|
|
|||
|
|
|||
|
-- -----------------------------------------------------------------------------
|
|||
|
-- type definitions
|
|||
|
|
|||
|
-- | A 'Parser' that corresponds to a type in the GraphQL schema. A 'Parser' is
|
|||
|
-- really two things at once:
|
|||
|
--
|
|||
|
-- 1. As its name implies, a 'Parser' can be used to parse GraphQL queries
|
|||
|
-- (via 'runParser').
|
|||
|
--
|
|||
|
-- 2. Less obviously, a 'Parser' represents a slice of the GraphQL schema,
|
|||
|
-- since every 'Parser' corresponds to a particular GraphQL type, and
|
|||
|
-- information about that type can be recovered (via 'parserType').
|
|||
|
--
|
|||
|
-- A natural way to view this is that 'Parser's support a sort of dynamic
|
|||
|
-- reflection: in addition to running a 'Parser' on an input query, you can ask
|
|||
|
-- it to tell you about what type of input it expects. Importantly, you can do
|
|||
|
-- this even if you don’t have a query to parse; this is necessary to implement
|
|||
|
-- GraphQL introspection, which provides precisely this sort of reflection on
|
|||
|
-- types.
|
|||
|
--
|
|||
|
-- Another way of viewing a 'Parser' is a little more quantum: just as light
|
|||
|
-- “sometimes behaves like a particle and sometimes behaves like a wave,” a
|
|||
|
-- 'Parser' “sometimes behaves like a query parser and sometimes behaves like a
|
|||
|
-- type.” In this way, you can think of a function that produces a 'Parser' as
|
|||
|
-- simultaneously both a function that constructs a GraphQL schema and a
|
|||
|
-- function that parses a GraphQL query. 'Parser' constructors therefore
|
|||
|
-- interleave two concerns: information about a type definition (like the type’s
|
|||
|
-- name and description) and information about how to parse a query on that type.
|
|||
|
--
|
|||
|
-- Notably, these two concerns happen at totally different phases in the
|
|||
|
-- program: GraphQL schema construction happens when @graphql-engine@ first
|
|||
|
-- starts up, before it receives any GraphQL queries at all. But query parsing
|
|||
|
-- obviously can’t happen until there is actually a query to parse. For that
|
|||
|
-- reason, it’s useful to take care to distinguish which effects are happening
|
|||
|
-- at which phase during 'Parser' construction, since otherwise you may get
|
|||
|
-- mixed up!
|
|||
|
--
|
|||
|
-- For some more information about how to interpret the meaning of a 'Parser',
|
|||
|
-- see Note [The meaning of Parser 'Output].
|
|||
|
data Parser k m a = Parser
|
|||
|
{ pType :: ~(Type k)
|
|||
|
-- ^ Lazy for knot-tying reasons; see Note [Tying the knot] in
|
|||
|
-- Hasura.GraphQL.Parser.Class.
|
|||
|
, pParser :: ParserInput k -> m a
|
|||
|
} deriving (Functor)
|
|||
|
|
|||
|
parserType :: Parser k m a -> Type k
|
|||
|
parserType = pType
|
|||
|
|
|||
|
runParser :: Parser k m a -> ParserInput k -> m a
|
|||
|
runParser = pParser
|
|||
|
|
|||
|
instance HasName (Parser k m a) where
|
|||
|
getName = getName . pType
|
|||
|
|
|||
|
instance HasDefinition (Parser k m a) (TypeInfo k) where
|
|||
|
definitionLens f parser = definitionLens f (pType parser) <&> \pType -> parser { pType }
|
|||
|
|
|||
|
type family ParserInput k where
|
|||
|
-- see Note [The 'Both kind] in Hasura.GraphQL.Parser.Schema
|
|||
|
ParserInput 'Both = InputValue Variable
|
|||
|
ParserInput 'Input = InputValue Variable
|
|||
|
-- see Note [The meaning of Parser 'Output]
|
|||
|
ParserInput 'Output = SelectionSet NoFragments Variable
|
|||
|
|
|||
|
{- Note [The meaning of Parser 'Output]
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
The ParserInput type family determines what a Parser accepts as input during
|
|||
|
query parsing, which varies based on its Kind. A `Parser 'Input`,
|
|||
|
unsurprisingly, parses GraphQL input values, much in the same way aeson
|
|||
|
`Parser`s parse JSON values.
|
|||
|
|
|||
|
Therefore, one might naturally conclude that `Parser 'Output` ought to parse
|
|||
|
GraphQL output values. But it doesn’t---a Parser is used to parse GraphQL
|
|||
|
*queries*, and output values don’t show up in queries anywhere! Rather, the
|
|||
|
output values are the results of executing the query, not something the user
|
|||
|
sends us, so we don’t have to parse those at all.
|
|||
|
|
|||
|
What output types really correspond to in GraphQL queries is selection sets. For
|
|||
|
example, if we have the GraphQL types
|
|||
|
|
|||
|
type User {
|
|||
|
posts(filters: PostFilters): [Post]
|
|||
|
}
|
|||
|
|
|||
|
input PostFilters {
|
|||
|
newer_than: Date
|
|||
|
}
|
|||
|
|
|||
|
type Post {
|
|||
|
id: Int
|
|||
|
title: String
|
|||
|
body: String
|
|||
|
}
|
|||
|
|
|||
|
then we might receive a query that looks like this:
|
|||
|
|
|||
|
query list_user_posts($user_id: Int, $date: Date) {
|
|||
|
user_by_id(id: $user_id) {
|
|||
|
posts(filters: {newer_than: $date}) {
|
|||
|
id
|
|||
|
title
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
We have Parsers to represent each of these types: a `Parser 'Input` for
|
|||
|
PostFilters, and two `Parser 'Output`s for User and Post. When we parse the
|
|||
|
query, we pass the `{newer_than: $date}` input value to the PostFilters parser,
|
|||
|
as expected. But what do we pass to the User parser? The answer is this
|
|||
|
selection set:
|
|||
|
|
|||
|
{
|
|||
|
posts(filters: {newer_than: $date}) {
|
|||
|
id
|
|||
|
title
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
Likewise, the Post parser eventually receives the inner selection set:
|
|||
|
|
|||
|
{
|
|||
|
id
|
|||
|
title
|
|||
|
}
|
|||
|
|
|||
|
These Parsers handle interpreting the fields of the selection sets. This is why
|
|||
|
`ParserInput 'Output` is SelectionSet---the GraphQL *type* associated with the
|
|||
|
Parser is an output type, but the part of the *query* that corresponds to that
|
|||
|
output type isn’t an output value but a selection set. -}
|
|||
|
|
|||
|
-- | The constraint @(''Input' '<:' k)@ entails @('ParserInput' k ~ 'Value')@,
|
|||
|
-- but GHC can’t figure that out on its own, so we have to be explicit to give
|
|||
|
-- it a little help.
|
|||
|
inputParserInput :: forall k. 'Input <: k => ParserInput k :~: InputValue Variable
|
|||
|
inputParserInput = case subKind @'Input @k of { KRefl -> Refl; KBoth -> Refl }
|
|||
|
|
|||
|
pInputParser :: forall k m a. 'Input <: k => Parser k m a -> InputValue Variable -> m a
|
|||
|
pInputParser = gcastWith (inputParserInput @k) pParser
|
|||
|
|
|||
|
infixl 1 `bind`
|
|||
|
bind :: Monad m => Parser k m a -> (a -> m b) -> Parser k m b
|
|||
|
bind p f = p { pParser = pParser p >=> f }
|
|||
|
|
|||
|
-- | Parses some collection of input fields. Build an 'InputFieldsParser' using
|
|||
|
-- 'field', 'fieldWithDefault', or 'fieldOptional', combine several together
|
|||
|
-- with the 'Applicative' instance, and finish it off using 'object' to turn it
|
|||
|
-- into a 'Parser'.
|
|||
|
data InputFieldsParser m a = InputFieldsParser
|
|||
|
-- Note: this is isomorphic to
|
|||
|
-- Compose ((,) [Definition (FieldInfo k)])
|
|||
|
-- (ReaderT (HashMap Name (FieldInput k)) m) a
|
|||
|
-- but working with that type sucks.
|
|||
|
{ ifDefinitions :: [Definition InputFieldInfo]
|
|||
|
, ifParser :: HashMap Name (InputValue Variable) -> m a
|
|||
|
} deriving (Functor)
|
|||
|
|
|||
|
infixl 1 `bindFields`
|
|||
|
bindFields :: Monad m => InputFieldsParser m a -> (a -> m b) -> InputFieldsParser m b
|
|||
|
bindFields p f = p { ifParser = ifParser p >=> f }
|
|||
|
|
|||
|
instance Applicative m => Applicative (InputFieldsParser m) where
|
|||
|
pure v = InputFieldsParser [] (const $ pure v)
|
|||
|
a <*> b = InputFieldsParser
|
|||
|
(ifDefinitions a <> ifDefinitions b)
|
|||
|
(liftA2 (<*>) (ifParser a) (ifParser b))
|
|||
|
|
|||
|
-- | A parser for a single field in a selection set. Build a 'FieldParser'
|
|||
|
-- with 'selection' or 'subselection', and combine them together with
|
|||
|
-- 'selectionSet' to obtain a 'Parser'.
|
|||
|
data FieldParser m a = FieldParser
|
|||
|
{ fDefinition :: Definition FieldInfo
|
|||
|
, fParser :: Field NoFragments Variable -> m a
|
|||
|
} deriving (Functor)
|
|||
|
|
|||
|
infixl 1 `bindField`
|
|||
|
bindField :: Monad m => FieldParser m a -> (a -> m b) -> FieldParser m b
|
|||
|
bindField p f = p { fParser = fParser p >=> f }
|
|||
|
|
|||
|
-- | A single parsed field in a selection set.
|
|||
|
data ParsedSelection a
|
|||
|
-- | An ordinary field.
|
|||
|
= SelectField a
|
|||
|
-- | The magical @__typename@ field, implicitly available on all objects
|
|||
|
-- <as part of GraphQL introspection http://spec.graphql.org/June2018/#sec-Type-Name-Introspection>.
|
|||
|
| SelectTypename Name
|
|||
|
deriving (Functor)
|
|||
|
|
|||
|
handleTypename :: (Name -> a) -> ParsedSelection a -> a
|
|||
|
handleTypename _ (SelectField value) = value
|
|||
|
handleTypename f (SelectTypename name) = f name
|
|||
|
|
|||
|
-- -----------------------------------------------------------------------------
|
|||
|
-- combinators
|
|||
|
|
|||
|
data ScalarRepresentation a where
|
|||
|
SRBoolean :: ScalarRepresentation Bool
|
|||
|
SRInt :: ScalarRepresentation Int32
|
|||
|
SRFloat :: ScalarRepresentation Double
|
|||
|
SRString :: ScalarRepresentation Text
|
|||
|
|
|||
|
scalar
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> ScalarRepresentation a
|
|||
|
-> Parser 'Both m a
|
|||
|
scalar name description representation = Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \v -> case representation of
|
|||
|
SRBoolean -> case v of
|
|||
|
GraphQLValue (VBoolean b) -> pure b
|
|||
|
JSONValue (A.Bool b) -> pure b
|
|||
|
_ -> typeMismatch name "a boolean" v
|
|||
|
SRInt -> case v of
|
|||
|
GraphQLValue (VInt i) -> convertWith scientificToInteger $ fromInteger i
|
|||
|
JSONValue (A.Number n) -> convertWith scientificToInteger n
|
|||
|
_ -> typeMismatch name "a 32-bit integer" v
|
|||
|
SRFloat -> case v of
|
|||
|
GraphQLValue (VFloat f) -> convertWith scientificToFloat f
|
|||
|
GraphQLValue (VInt i) -> convertWith scientificToFloat $ fromInteger i
|
|||
|
JSONValue (A.Number n) -> convertWith scientificToFloat n
|
|||
|
_ -> typeMismatch name "a float" v
|
|||
|
SRString -> case v of
|
|||
|
GraphQLValue (VString s) -> pure s
|
|||
|
JSONValue (A.String s) -> pure s
|
|||
|
_ -> typeMismatch name "a string" v
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
|||
|
convertWith f = either (parseErrorWith ParseFailed . qeError) pure . runAesonParser f
|
|||
|
|
|||
|
{- WIP NOTE (FIXME: make into an actual note by expanding on it a bit)
|
|||
|
|
|||
|
There's a delicate balance between GraphQL types and Postgres types.
|
|||
|
|
|||
|
The mapping is done in the 'column' parser. But we want to only have
|
|||
|
one source of truth for parsing postgres values, which happens to be
|
|||
|
the JSON parsing code in SQL.Value. So here we reuse some of that code
|
|||
|
despite not having a JSON value.
|
|||
|
|
|||
|
-}
|
|||
|
|
|||
|
boolean :: MonadParse m => Parser 'Both m Bool
|
|||
|
boolean = scalar boolScalar Nothing SRBoolean
|
|||
|
|
|||
|
int :: MonadParse m => Parser 'Both m Int32
|
|||
|
int = scalar intScalar Nothing SRInt
|
|||
|
|
|||
|
float :: MonadParse m => Parser 'Both m Double
|
|||
|
float = scalar floatScalar Nothing SRFloat
|
|||
|
|
|||
|
string :: MonadParse m => Parser 'Both m Text
|
|||
|
string = scalar stringScalar Nothing SRString
|
|||
|
|
|||
|
-- | As an input type, any string or integer input value should be coerced to ID as Text
|
|||
|
-- https://spec.graphql.org/June2018/#sec-ID
|
|||
|
identifier :: MonadParse m => Parser 'Both m Text
|
|||
|
identifier = Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
|||
|
GraphQLValue (VString s) -> pure s
|
|||
|
GraphQLValue (VInt i) -> pure $ T.pack $ show i
|
|||
|
JSONValue (A.String s) -> pure s
|
|||
|
JSONValue (A.Number n) -> parseScientific n
|
|||
|
v -> typeMismatch idName "a String or a 32-bit integer" v
|
|||
|
}
|
|||
|
where
|
|||
|
idName = idScalar
|
|||
|
schemaType = NonNullable $ TNamed $ mkDefinition idName Nothing TIScalar
|
|||
|
parseScientific = either (parseErrorWith ParseFailed . qeError)
|
|||
|
(pure . T.pack . show @Int) . runAesonParser scientificToInteger
|
|||
|
|
|||
|
namedJSON :: MonadParse m => Name -> Maybe Description -> Parser 'Both m A.Value
|
|||
|
namedJSON name description = Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = valueToJSON $ toGraphQLType schemaType
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
|||
|
|
|||
|
json, jsonb :: MonadParse m => Parser 'Both m A.Value
|
|||
|
json = namedJSON $$(litName "json") Nothing
|
|||
|
jsonb = namedJSON $$(litName "jsonb") Nothing
|
|||
|
|
|||
|
-- | Explicitly define any desired scalar type. This is unsafe because it does
|
|||
|
-- not mark queries as unreusable when they should be.
|
|||
|
unsafeRawScalar
|
|||
|
:: MonadParse n
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Parser 'Both n (InputValue Variable)
|
|||
|
unsafeRawScalar name description = Parser
|
|||
|
{ pType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
|||
|
, pParser = pure
|
|||
|
}
|
|||
|
|
|||
|
enum
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> NonEmpty (Definition EnumValueInfo, a)
|
|||
|
-> Parser 'Both m a
|
|||
|
enum name description values = Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
|||
|
JSONValue (A.String stringValue)
|
|||
|
| Just enumValue <- mkName stringValue -> validate enumValue
|
|||
|
GraphQLValue (VEnum (EnumValue enumValue)) -> validate enumValue
|
|||
|
other -> typeMismatch name "an enum value" other
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = NonNullable $ TNamed $ mkDefinition name description $ TIEnum (fst <$> values)
|
|||
|
valuesMap = M.fromList $ over (traverse._1) dName $ toList values
|
|||
|
validate value = case M.lookup value valuesMap of
|
|||
|
Just result -> pure result
|
|||
|
Nothing -> parseError $ "expected one of the values "
|
|||
|
<> englishList "or" (dquoteTxt . dName . fst <$> values) <> " for type "
|
|||
|
<> name <<> ", but found " <>> value
|
|||
|
|
|||
|
nullable :: forall k m a. (MonadParse m, 'Input <: k) => Parser k m a -> Parser k m (Maybe a)
|
|||
|
nullable parser = gcastWith (inputParserInput @k) Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
|||
|
JSONValue A.Null -> pure Nothing
|
|||
|
GraphQLValue VNull -> pure Nothing
|
|||
|
value -> Just <$> pParser parser value
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = nullableType $ pType parser
|
|||
|
|
|||
|
-- | Decorate a schema field as NON_NULL
|
|||
|
nonNullableField :: forall m a . FieldParser m a -> FieldParser m a
|
|||
|
nonNullableField (FieldParser (Definition n u d (FieldInfo as t)) p) =
|
|||
|
FieldParser (Definition n u d (FieldInfo as (nonNullableType t))) p
|
|||
|
|
|||
|
-- | Decorate a schema field as NULL
|
|||
|
nullableField :: forall m a . FieldParser m a -> FieldParser m a
|
|||
|
nullableField (FieldParser (Definition n u d (FieldInfo as t)) p) =
|
|||
|
FieldParser (Definition n u d (FieldInfo as (nullableType t))) p
|
|||
|
{-
|
|||
|
field = field
|
|||
|
{ fDefinition = (fDefinition field)
|
|||
|
{ dInfo = (dInfo (fDefinition field))
|
|||
|
{ fType = nonNullableType (fType (dInfo (fDefinition field)))
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
-}
|
|||
|
-- | Decorate a schema output type as NON_NULL
|
|||
|
nonNullableParser :: forall m a . Parser 'Output m a -> Parser 'Output m a
|
|||
|
nonNullableParser parser = parser { pType = nonNullableType (pType parser) }
|
|||
|
|
|||
|
multiple :: Parser 'Output m a -> Parser 'Output m a
|
|||
|
multiple parser = parser { pType = Nullable $ TList $ pType parser }
|
|||
|
|
|||
|
list :: forall k m a. (MonadParse m, 'Input <: k) => Parser k m a -> Parser k m [a]
|
|||
|
list parser = gcastWith (inputParserInput @k) Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
|||
|
GraphQLValue (VList values) -> for (zip [0..] values) \(index, value) ->
|
|||
|
withPath (++[Index index]) $ pParser parser $ GraphQLValue value
|
|||
|
JSONValue (A.Array values) -> for (zip [0..] $ toList values) \(index, value) ->
|
|||
|
withPath (++[Index index]) $ pParser parser $ JSONValue value
|
|||
|
-- List Input Coercion
|
|||
|
--
|
|||
|
-- According to section 3.11 of the GraphQL spec: iff the value
|
|||
|
-- passed as an input to a list type is not a list and not the
|
|||
|
-- null value, then the result of input coercion is a list of
|
|||
|
-- size one, where the single item value is the result of input
|
|||
|
-- coercion for the list’s item type on the provided value.
|
|||
|
--
|
|||
|
-- We need to explicitly test for VNull here, otherwise we could
|
|||
|
-- be returning `[null]` if the parser accepts a null value,
|
|||
|
-- which would contradict the spec.
|
|||
|
GraphQLValue VNull -> parseError "expected a list, but found null"
|
|||
|
JSONValue A.Null -> parseError "expected a list, but found null"
|
|||
|
other -> fmap pure $ withPath (++[Index 0]) $ pParser parser other
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = NonNullable $ TList $ pType parser
|
|||
|
|
|||
|
object
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> InputFieldsParser m a
|
|||
|
-> Parser 'Input m a
|
|||
|
object name description parser = Parser
|
|||
|
{ pType = schemaType
|
|||
|
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
|||
|
GraphQLValue (VObject fields) -> parseFields $ GraphQLValue <$> fields
|
|||
|
JSONValue (A.Object fields) -> do
|
|||
|
translatedFields <- M.fromList <$> for (M.toList fields) \(key, val) -> do
|
|||
|
name' <- mkName key `onNothing` parseError
|
|||
|
("variable value contains object with key " <> key <<> ", which is not a legal GraphQL name")
|
|||
|
pure (name', JSONValue val)
|
|||
|
parseFields translatedFields
|
|||
|
other -> typeMismatch name "an object" other
|
|||
|
}
|
|||
|
where
|
|||
|
schemaType = NonNullable $ TNamed $ mkDefinition name description $
|
|||
|
TIInputObject (InputObjectInfo (ifDefinitions parser))
|
|||
|
fieldNames = S.fromList (dName <$> ifDefinitions parser)
|
|||
|
parseFields fields = do
|
|||
|
-- check for extraneous fields here, since the InputFieldsParser just
|
|||
|
-- handles parsing the fields it cares about
|
|||
|
for_ (M.keys fields) \fieldName ->
|
|||
|
unless (fieldName `S.member` fieldNames) $ withPath (++[Key (unName fieldName)]) $
|
|||
|
parseError $ "field " <> dquote fieldName <> " not found in type: " <> squote name
|
|||
|
ifParser parser fields
|
|||
|
|
|||
|
{- Note [Optional fields and nullability]
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
GraphQL conflates optional fields and nullability. A field of a GraphQL input
|
|||
|
object (or an argument to a selection set field, which is really the same thing)
|
|||
|
is optional if and only if its type is nullable. It’s worth fully spelling out
|
|||
|
the implications here: if a field (or argument) is non-nullable, it /cannot/ be
|
|||
|
omitted. So, for example, suppose we had a table type like this:
|
|||
|
|
|||
|
type article {
|
|||
|
comments(limit: Int!): [comment!]!
|
|||
|
}
|
|||
|
|
|||
|
Since we made `limit` non-nullable, it is /illegal/ to omit the argument. You’d
|
|||
|
/always/ have to provide some value---and that isn’t what we want, because the
|
|||
|
row limit should be optional. We have no choice but to make it nullable:
|
|||
|
|
|||
|
type article {
|
|||
|
comments(limit: Int): [comment!]!
|
|||
|
}
|
|||
|
|
|||
|
But this feels questionable. Should we really accept `null` values for `limit`?
|
|||
|
That is, should this query be legal?
|
|||
|
|
|||
|
{
|
|||
|
articles {
|
|||
|
comments(limit: null) { ... }
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
A tempting answer to that question is “yes”: we can just treat a `null` value
|
|||
|
for any optional field as precisely equivalent to leaving the field off
|
|||
|
entirely. That is, any field with no default value really just has a default
|
|||
|
value of `null`. Unfortunately, this approach turns out to be a really bad idea.
|
|||
|
It’s all too easy to write something like
|
|||
|
|
|||
|
mutation delete_article_by_id($article_id: Int) {
|
|||
|
delete_articles(where: {id: {eq: $article_id}})
|
|||
|
}
|
|||
|
|
|||
|
then accidentally misspell `article_id` in the variables payload, and now you’ve
|
|||
|
deleted all the articles in your database. Very bad.
|
|||
|
|
|||
|
So we’d really like to be able to have a way to say “this field is optional, but
|
|||
|
`null` is not a legal value,” but at first it seems like the GraphQL spec ties
|
|||
|
our hands. Fortunately, there is a way out. The spec explicitly permits
|
|||
|
distinguishing between the following two situations:
|
|||
|
|
|||
|
comments { ... }
|
|||
|
comments(limit: null) { ... }
|
|||
|
|
|||
|
That is, the spec allows implementations to behave differently depending on
|
|||
|
whether an argument was omitted or whether its value was `null`. This is spelled
|
|||
|
out in a few different places in the spec, but §3.10 Input Objects
|
|||
|
<http://spec.graphql.org/June2018/#sec-Input-Objects> is the most explicit:
|
|||
|
|
|||
|
> If the value `null` was provided for an input object field, and the field’s
|
|||
|
> type is not a non‐null type, an entry in the coerced unordered map is given
|
|||
|
> the value `null`. In other words, there is a semantic difference between the
|
|||
|
> explicitly provided value `null` versus having not provided a value.
|
|||
|
|
|||
|
Note that this is only allowed for fields that don’t have any default value! If
|
|||
|
the field were declared with an explicit `null` default value, like
|
|||
|
|
|||
|
type article {
|
|||
|
comments(limit: Int = null): [comment!]!
|
|||
|
}
|
|||
|
|
|||
|
then it would not be legal to distinguish the two cases. Yes, this is all
|
|||
|
terribly subtle.
|
|||
|
|
|||
|
Okay. So armed with that knowledge, what do we do about it? We offer three
|
|||
|
different combinators for parsing input fields:
|
|||
|
|
|||
|
1. `field` — Defines a field with no default value. The field’s nullability is
|
|||
|
taken directly from the nullability of the field’s value parser.
|
|||
|
2. `fieldOptional` — Defines a field with no default value that is always
|
|||
|
nullable. Returns Nothing if (and only if!) the field is omitted.
|
|||
|
3. `fieldWithDefault` — Defines a field with a default value.
|
|||
|
|
|||
|
The last of the three, `fieldWithDefault`, is actually the simplest. It
|
|||
|
corresponds to a field with a default value, and the underlying value parser
|
|||
|
will /always/ be called. If the field is omitted, the value parser is called
|
|||
|
with the default value. (This makes it impossible to distinguish omitted fields
|
|||
|
from those explicitly passed the default value, as mandated by the spec.) Use
|
|||
|
`fieldWithDefault` for any field or argument with a non-`null` default value.
|
|||
|
|
|||
|
`field` is also fairly straightforward. It always calls its value parser, so if
|
|||
|
the field is omitted, it calls it with a value of `null`. Notably, there is no
|
|||
|
special handling for non-nullable fields, since the underlying parser will raise
|
|||
|
an error in that case, anyway. Use `field` for required fields, and combine
|
|||
|
`field` with `nullable` for optional fields with a default value of `null`.
|
|||
|
|
|||
|
`fieldOptional` is the most interesting. Unlike `field` and `fieldWithDefault`,
|
|||
|
`fieldOptional` does not call its underlying value parser if the field is not
|
|||
|
provided; it simply returns Nothing. If a value /is/ provided, it is passed
|
|||
|
along without modification. This yields an interesting interaction when the
|
|||
|
value parser does not actually accept nulls, such as a parser like this:
|
|||
|
|
|||
|
fieldOptional $$(litName "limit") Nothing int
|
|||
|
|
|||
|
This corresponds to the `limit` field from our original example. If the field is
|
|||
|
omitted, the `int` parser is not called, and the field parser just returns
|
|||
|
Nothing. But if a value of `null` is explicitly provided, it is forwarded to the
|
|||
|
`int` parser, which then rejects it with a parse error, since it does not accept
|
|||
|
nulls. This is exactly the behavior we want.
|
|||
|
|
|||
|
This semantics can appear confusing. We end up with a field with a nullable type
|
|||
|
for which `null` is not a legal value! A strange interpretation of “nullable”,
|
|||
|
indeed. But realize that the nullability really means “optional”, and the
|
|||
|
behavior makes more sense.
|
|||
|
|
|||
|
As a final point, note that similar behavior can be obtained with
|
|||
|
`fieldWithDefault`. The following creates a boolean field that defaults to
|
|||
|
`false` and rejects `null` values:
|
|||
|
|
|||
|
fieldWithDefault $$(litName "includeDeprecated") Nothing (VBoolean False) boolean
|
|||
|
|
|||
|
This is a perfectly reasonable thing to do for exactly the same rationale behind
|
|||
|
the use of `fieldOptional` above. -}
|
|||
|
|
|||
|
-- | Creates a parser for an input field. The field’s nullability is determined
|
|||
|
-- by the nullability of the given value parser; see Note [Optional fields and
|
|||
|
-- nullability] for more details.
|
|||
|
field
|
|||
|
:: (MonadParse m, 'Input <: k)
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Parser k m a
|
|||
|
-> InputFieldsParser m a
|
|||
|
field name description parser = case pType parser of
|
|||
|
NonNullable typ -> InputFieldsParser
|
|||
|
{ ifDefinitions = [mkDefinition name description $ IFRequired typ]
|
|||
|
, ifParser = \ values -> withPath (++[Key (unName name)]) do
|
|||
|
value <- onNothing (M.lookup name values) $
|
|||
|
parseError ("missing required field " <>> name)
|
|||
|
pInputParser parser value
|
|||
|
}
|
|||
|
-- nullable fields just have an implicit default value of `null`
|
|||
|
Nullable _ -> fieldWithDefault name description VNull parser
|
|||
|
|
|||
|
-- | Creates a parser for an input field with the given default value. The
|
|||
|
-- resulting field will always be nullable, even if the underlying parser
|
|||
|
-- rejects `null` values; see Note [Optional fields and nullability] for more
|
|||
|
-- details.
|
|||
|
fieldWithDefault
|
|||
|
:: (MonadParse m, 'Input <: k)
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Value Void -- ^ default value
|
|||
|
-> Parser k m a
|
|||
|
-> InputFieldsParser m a
|
|||
|
fieldWithDefault name description defaultValue parser = InputFieldsParser
|
|||
|
{ ifDefinitions = [mkDefinition name description $ IFOptional (pType parser) (Just defaultValue)]
|
|||
|
, ifParser = M.lookup name >>> withPath (++[Key (unName name)]) . \case
|
|||
|
Just value -> peelVariableWith True expectedType value >>= parseValue expectedType
|
|||
|
Nothing -> pInputParser parser $ GraphQLValue $ literal defaultValue
|
|||
|
}
|
|||
|
where
|
|||
|
expectedType = Just $ toGraphQLType $ pType parser
|
|||
|
parseValue _ value = pInputParser parser value
|
|||
|
{-
|
|||
|
FIXME!!!!
|
|||
|
FIXME!!!!
|
|||
|
|
|||
|
parseValue expectedType value = case value of
|
|||
|
VVariable (var@Variable { vInfo, vValue }) -> do
|
|||
|
typeCheck expectedType var
|
|||
|
-- This case is tricky: if we get a nullable variable, we have to
|
|||
|
-- pessimistically mark the query non-reusable, regardless of its
|
|||
|
-- contents. Why? Well, suppose we have a type like
|
|||
|
--
|
|||
|
-- type Foo {
|
|||
|
-- bar(arg: Int = 42): String
|
|||
|
-- }
|
|||
|
--
|
|||
|
-- and suppose we receive the following query:
|
|||
|
--
|
|||
|
-- query blah($var: Int) {
|
|||
|
-- foo {
|
|||
|
-- bar(arg: $var)
|
|||
|
-- }
|
|||
|
-- }
|
|||
|
--
|
|||
|
-- Suppose no value is provided for $var, so it defaults to null. When
|
|||
|
-- we parse the arg field, we see it has a default value, so we
|
|||
|
-- substitute 42 for null and carry on. But now we’ve discarded the
|
|||
|
-- information that this value came from a variable at all, so if we
|
|||
|
-- cache the query plan, changes to the variable will be ignored, since
|
|||
|
-- we’ll always use 42!
|
|||
|
--
|
|||
|
-- Note that the problem doesn’t go away even if $var has a non-null
|
|||
|
-- value. In that case, we’d simply have flipped the problem around: now
|
|||
|
-- our cached query plan will do the wrong thing if $var *is* null,
|
|||
|
-- since we won’t know to substitute 42.
|
|||
|
--
|
|||
|
-- Theoretically, we could be smarter here: we could record a sort of
|
|||
|
-- “derived variable reference” that includes a new default value. But
|
|||
|
-- that would be more complicated, so for now we don’t do that.
|
|||
|
case vInfo of
|
|||
|
VIRequired _ -> pInputParser parser value
|
|||
|
VIOptional _ _ -> markNotReusable *> parseValue expectedType (literal vValue)
|
|||
|
VNull -> pInputParser parser $ literal defaultValue
|
|||
|
_ -> pInputParser parser value
|
|||
|
-}
|
|||
|
|
|||
|
-- | Creates a parser for a nullable field with no default value. If the field
|
|||
|
-- is omitted, the provided parser /will not be called/. This allows a field to
|
|||
|
-- distinguish an omitted field from a field supplied with @null@ (which is
|
|||
|
-- permitted by the GraphQL specification); see Note [Optional fields and
|
|||
|
-- nullability] for more details.
|
|||
|
--
|
|||
|
-- If you want a field with a default value of @null@, combine 'field' with
|
|||
|
-- 'nullable', instead.
|
|||
|
fieldOptional
|
|||
|
:: (MonadParse m, 'Input <: k)
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Parser k m a
|
|||
|
-> InputFieldsParser m (Maybe a)
|
|||
|
fieldOptional name description parser = InputFieldsParser
|
|||
|
{ ifDefinitions = [mkDefinition name description $
|
|||
|
IFOptional (nullableType $ pType parser) Nothing]
|
|||
|
, ifParser = M.lookup name >>> withPath (++[Key (unName name)]) .
|
|||
|
traverse (pInputParser parser <=< peelVariable expectedType)
|
|||
|
}
|
|||
|
where
|
|||
|
expectedType = Just $ toGraphQLType $ nullableType $ pType parser
|
|||
|
|
|||
|
-- | A variant of 'selectionSetObject' which doesn't implement any interfaces
|
|||
|
selectionSet
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> [FieldParser m a]
|
|||
|
-> Parser 'Output m (OMap.InsOrdHashMap Name (ParsedSelection a))
|
|||
|
selectionSet name desc fields = selectionSetObject name desc fields []
|
|||
|
|
|||
|
-- Should this rather take a non-empty `FieldParser` list?
|
|||
|
-- See also Note [Selectability of tables].
|
|||
|
selectionSetObject
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> [FieldParser m a]
|
|||
|
-- ^ Fields of this object, including any fields that are required from the
|
|||
|
-- interfaces that it implements. Note that we can't derive those fields from
|
|||
|
-- the list of interfaces (next argument), because the types of the fields of
|
|||
|
-- the object are only required to be *subtypes* of the types of the fields of
|
|||
|
-- the interfaces it implements.
|
|||
|
-> [Parser 'Output m b]
|
|||
|
-- ^ Interfaces implemented by this object;
|
|||
|
-- see Note [The interfaces story] in Hasura.GraphQL.Parser.Schema.
|
|||
|
-> Parser 'Output m (OMap.InsOrdHashMap Name (ParsedSelection a))
|
|||
|
selectionSetObject name description parsers implementsInterfaces = Parser
|
|||
|
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
|||
|
TIObject $ ObjectInfo (map fDefinition parsers) interfaces
|
|||
|
, pParser = \input -> withPath (++[Key "selectionSet"]) do
|
|||
|
-- Not all fields have a selection set, but if they have one, it
|
|||
|
-- must contain at least one field. The GraphQL parser returns a
|
|||
|
-- list to represent this: an empty list indicates there was no
|
|||
|
-- selection set, as an empty set is rejected outright.
|
|||
|
-- Arguably, this would be better represented by a `Maybe
|
|||
|
-- (NonEmpty a)`.
|
|||
|
-- The parser can't know whether a given field needs a selection
|
|||
|
-- set or not; but if we're in this function, it means that yes:
|
|||
|
-- this field needs a selection set, and if none was provided,
|
|||
|
-- we must fail.
|
|||
|
when (null input) $
|
|||
|
parseError $ "missing selection set for " <>> name
|
|||
|
|
|||
|
-- TODO(PDV) This probably accepts invalid queries, namely queries that use
|
|||
|
-- type names that do not exist.
|
|||
|
fields <- collectFields (name:parsedInterfaceNames) input
|
|||
|
for fields \selectionField@Field{ _fName, _fAlias } -> if
|
|||
|
| _fName == $$(litName "__typename") ->
|
|||
|
pure $ SelectTypename name
|
|||
|
| Just parser <- M.lookup _fName parserMap ->
|
|||
|
withPath (++[Key (unName _fName)]) $
|
|||
|
SelectField <$> parser selectionField
|
|||
|
| otherwise ->
|
|||
|
withPath (++[Key (unName _fName)]) $
|
|||
|
parseError $ "field " <> _fName <<> " not found in type: " <> squote name
|
|||
|
}
|
|||
|
where
|
|||
|
parserMap = parsers
|
|||
|
& map (\FieldParser{ fDefinition, fParser } -> (getName fDefinition, fParser))
|
|||
|
& M.fromList
|
|||
|
interfaces = mapMaybe (getInterfaceInfo . pType) implementsInterfaces
|
|||
|
parsedInterfaceNames = fmap getName interfaces
|
|||
|
|
|||
|
selectionSetInterface
|
|||
|
:: (MonadParse n, Traversable t)
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> [FieldParser n a]
|
|||
|
-- ^ Fields defined in this interface
|
|||
|
-> t (Parser 'Output n b)
|
|||
|
-- ^ Parsers for the object types that implement this interface; see
|
|||
|
-- Note [The interfaces story] in Hasura.GraphQL.Parser.Schema for details.
|
|||
|
-> Parser 'Output n (t b)
|
|||
|
selectionSetInterface name description fields objectImplementations = Parser
|
|||
|
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
|||
|
TIInterface $ InterfaceInfo (map fDefinition fields) objects
|
|||
|
, pParser = \input -> for objectImplementations (($ input) . pParser)
|
|||
|
-- Note: This is somewhat suboptimal, since it parses a query against every
|
|||
|
-- possible object implementing this interface, possibly duplicating work for
|
|||
|
-- fields defined on the interface itself.
|
|||
|
--
|
|||
|
-- Furthermore, in our intended use case (Relay), based on a field argument,
|
|||
|
-- we can decide which object we are about to retrieve, so in theory we could
|
|||
|
-- save some work by only parsing against that object type. But it’s still
|
|||
|
-- useful to parse against all of them, since it checks the validity of any
|
|||
|
-- fragments on the other types.
|
|||
|
}
|
|||
|
where
|
|||
|
objects = catMaybes $ toList $ fmap (getObjectInfo . pType) objectImplementations
|
|||
|
|
|||
|
selectionSetUnion
|
|||
|
:: (MonadParse n, Traversable t)
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> t (Parser 'Output n b) -- ^ The member object types.
|
|||
|
-> Parser 'Output n (t b)
|
|||
|
selectionSetUnion name description objectImplementations = Parser
|
|||
|
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
|||
|
TIUnion $ UnionInfo objects
|
|||
|
, pParser = \input -> for objectImplementations (($ input) . pParser)
|
|||
|
}
|
|||
|
where
|
|||
|
objects = catMaybes $ toList $ fmap (getObjectInfo . pType) objectImplementations
|
|||
|
|
|||
|
-- | An "escape hatch" that doesn't validate anything and just gives the
|
|||
|
-- requested selection set. This is unsafe because it does not check the
|
|||
|
-- selection set for validity.
|
|||
|
unsafeRawParser
|
|||
|
:: forall m
|
|||
|
. MonadParse m
|
|||
|
=> Type 'Output
|
|||
|
-> Parser 'Output m (SelectionSet NoFragments Variable)
|
|||
|
unsafeRawParser tp = Parser
|
|||
|
{ pType = tp
|
|||
|
, pParser = pure
|
|||
|
}
|
|||
|
|
|||
|
unsafeRawField
|
|||
|
:: forall m
|
|||
|
. MonadParse m
|
|||
|
=> Definition FieldInfo
|
|||
|
-> FieldParser m (Field NoFragments Variable)
|
|||
|
unsafeRawField def = FieldParser
|
|||
|
{ fDefinition = def
|
|||
|
, fParser = pure
|
|||
|
}
|
|||
|
|
|||
|
-- | Builds a 'FieldParser' for a field that does not take a subselection set,
|
|||
|
-- i.e. a field that returns a scalar or enum. The field’s type is taken from
|
|||
|
-- the provided 'Parser', but the 'Parser' is not otherwise used.
|
|||
|
--
|
|||
|
-- See also Note [The delicate balance of GraphQL kinds] in "Hasura.GraphQL.Parser.Schema".
|
|||
|
selection
|
|||
|
:: forall m a b
|
|||
|
. MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> InputFieldsParser m a -- ^ parser for the input arguments
|
|||
|
-> Parser 'Both m b -- ^ type of the result
|
|||
|
-> FieldParser m a
|
|||
|
selection name description argumentsParser resultParser = FieldParser
|
|||
|
{ fDefinition = mkDefinition name description $
|
|||
|
FieldInfo (ifDefinitions argumentsParser) (pType resultParser)
|
|||
|
, fParser = \Field{ _fArguments, _fSelectionSet } -> do
|
|||
|
unless (null _fSelectionSet) $
|
|||
|
parseError "unexpected subselection set for non-object field"
|
|||
|
-- check for extraneous arguments here, since the InputFieldsParser just
|
|||
|
-- handles parsing the fields it cares about
|
|||
|
for_ (M.keys _fArguments) \argumentName ->
|
|||
|
unless (argumentName `S.member` argumentNames) $
|
|||
|
parseError $ name <<> " has no argument named " <>> argumentName
|
|||
|
withPath (++[Key "args"]) $ ifParser argumentsParser $ GraphQLValue <$> _fArguments
|
|||
|
}
|
|||
|
where
|
|||
|
argumentNames = S.fromList (dName <$> ifDefinitions argumentsParser)
|
|||
|
|
|||
|
-- | Builds a 'FieldParser' for a field that takes a subselection set, i.e. a
|
|||
|
-- field that returns an object.
|
|||
|
--
|
|||
|
-- See also Note [The delicate balance of GraphQL kinds] in "Hasura.GraphQL.Parser.Schema".
|
|||
|
subselection
|
|||
|
:: forall m a b
|
|||
|
. MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> InputFieldsParser m a -- ^ parser for the input arguments
|
|||
|
-> Parser 'Output m b -- ^ parser for the subselection set
|
|||
|
-> FieldParser m (a, b)
|
|||
|
subselection name description argumentsParser bodyParser = FieldParser
|
|||
|
{ fDefinition = mkDefinition name description $
|
|||
|
FieldInfo (ifDefinitions argumentsParser) (pType bodyParser)
|
|||
|
, fParser = \Field{ _fArguments, _fSelectionSet } -> do
|
|||
|
-- check for extraneous arguments here, since the InputFieldsParser just
|
|||
|
-- handles parsing the fields it cares about
|
|||
|
for_ (M.keys _fArguments) \argumentName ->
|
|||
|
unless (argumentName `S.member` argumentNames) $
|
|||
|
parseError $ name <<> " has no argument named " <>> argumentName
|
|||
|
(,) <$> withPath (++[Key "args"]) (ifParser argumentsParser $ GraphQLValue <$> _fArguments)
|
|||
|
<*> pParser bodyParser _fSelectionSet
|
|||
|
}
|
|||
|
where
|
|||
|
argumentNames = S.fromList (dName <$> ifDefinitions argumentsParser)
|
|||
|
|
|||
|
-- | A shorthand for a 'selection' that takes no arguments.
|
|||
|
selection_
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Parser 'Both m a -- ^ type of the result
|
|||
|
-> FieldParser m ()
|
|||
|
selection_ name description = selection name description (pure ())
|
|||
|
|
|||
|
-- | A shorthand for a 'subselection' that takes no arguments.
|
|||
|
subselection_
|
|||
|
:: MonadParse m
|
|||
|
=> Name
|
|||
|
-> Maybe Description
|
|||
|
-> Parser 'Output m a -- ^ parser for the subselection set
|
|||
|
-> FieldParser m a
|
|||
|
subselection_ name description bodyParser =
|
|||
|
snd <$> subselection name description (pure ()) bodyParser
|
|||
|
|
|||
|
|
|||
|
-- -----------------------------------------------------------------------------
|
|||
|
-- helpers
|
|||
|
|
|||
|
valueToJSON :: MonadParse m => GType -> InputValue Variable -> m A.Value
|
|||
|
valueToJSON expected = peelVariable (Just expected) >=> valueToJSON'
|
|||
|
where
|
|||
|
valueToJSON' = \case
|
|||
|
JSONValue j -> pure j
|
|||
|
GraphQLValue g -> graphQLToJSON g
|
|||
|
graphQLToJSON = \case
|
|||
|
VNull -> pure A.Null
|
|||
|
VInt i -> pure $ A.toJSON i
|
|||
|
VFloat f -> pure $ A.toJSON f
|
|||
|
VString t -> pure $ A.toJSON t
|
|||
|
VBoolean b -> pure $ A.toJSON b
|
|||
|
VEnum (EnumValue n) -> pure $ A.toJSON n
|
|||
|
VList values -> A.toJSON <$> traverse graphQLToJSON values
|
|||
|
VObject objects -> A.toJSON <$> traverse graphQLToJSON objects
|
|||
|
VVariable variable -> valueToJSON' $ absurd <$> vValue variable
|
|||
|
|
|||
|
jsonToGraphQL :: (MonadError Text m) => A.Value -> m (Value Void)
|
|||
|
jsonToGraphQL = \case
|
|||
|
A.Null -> pure VNull
|
|||
|
A.Bool val -> pure $ VBoolean val
|
|||
|
A.String val -> pure $ VString val
|
|||
|
A.Number val -> case toBoundedInteger val of
|
|||
|
Just intVal -> pure $ VInt $ fromIntegral @Int64 intVal
|
|||
|
Nothing -> pure $ VFloat val
|
|||
|
A.Array vals -> VList <$> traverse jsonToGraphQL (toList vals)
|
|||
|
A.Object vals -> VObject . M.fromList <$> for (M.toList vals) \(key, val) -> do
|
|||
|
graphQLName <- onNothing (mkName key) $ throwError $
|
|||
|
"variable value contains object with key " <> key <<> ", which is not a legal GraphQL name"
|
|||
|
(graphQLName,) <$> jsonToGraphQL val
|
|||
|
|
|||
|
peelVariable :: MonadParse m => Maybe GType -> InputValue Variable -> m (InputValue Variable)
|
|||
|
peelVariable = peelVariableWith False
|
|||
|
|
|||
|
peelVariableWith :: MonadParse m => Bool -> Maybe GType -> InputValue Variable -> m (InputValue Variable)
|
|||
|
peelVariableWith hasLocationDefaultValue expected = \case
|
|||
|
GraphQLValue (VVariable var) -> do
|
|||
|
onJust expected \locationType -> typeCheck hasLocationDefaultValue locationType var
|
|||
|
markNotReusable
|
|||
|
pure $ absurd <$> vValue var
|
|||
|
value -> pure value
|
|||
|
|
|||
|
typeCheck :: MonadParse m => Bool -> GType -> Variable -> m ()
|
|||
|
typeCheck hasLocationDefaultValue locationType variable@Variable { vInfo, vType } =
|
|||
|
unless (isVariableUsageAllowed hasLocationDefaultValue locationType variable) $ parseError
|
|||
|
$ "variable " <> dquote (getName vInfo) <> " is declared as "
|
|||
|
<> showGT vType <> ", but used where "
|
|||
|
<> showGT locationType <> " is expected"
|
|||
|
|
|||
|
typeMismatch :: MonadParse m => Name -> Text -> InputValue Variable -> m a
|
|||
|
typeMismatch name expected given = parseError $
|
|||
|
"expected " <> expected <> " for type " <> name <<> ", but found " <> describeValue given
|
|||
|
|
|||
|
describeValue :: InputValue Variable -> Text
|
|||
|
describeValue = describeValueWith (describeValueWith absurd . vValue)
|
|||
|
|
|||
|
describeValueWith :: (var -> Text) -> InputValue var -> Text
|
|||
|
describeValueWith describeVariable = \case
|
|||
|
JSONValue jval -> describeJSON jval
|
|||
|
GraphQLValue gval -> describeGraphQL gval
|
|||
|
where
|
|||
|
describeJSON = \case
|
|||
|
A.Null -> "null"
|
|||
|
A.Bool _ -> "a boolean"
|
|||
|
A.String _ -> "a string"
|
|||
|
A.Number _ -> "a number"
|
|||
|
A.Array _ -> "a list"
|
|||
|
A.Object _ -> "an object"
|
|||
|
describeGraphQL = \case
|
|||
|
VVariable var -> describeVariable var
|
|||
|
VInt _ -> "an integer"
|
|||
|
VFloat _ -> "a float"
|
|||
|
VString _ -> "a string"
|
|||
|
VBoolean _ -> "a boolean"
|
|||
|
VNull -> "null"
|
|||
|
VEnum _ -> "an enum value"
|
|||
|
VList _ -> "a list"
|
|||
|
VObject _ -> "an object"
|
|||
|
|
|||
|
-- | Checks whether the type of a variable is compatible with the type
|
|||
|
-- at the location at which it is used. This is an implementation of
|
|||
|
-- the function described in section 5.8.5 of the spec:
|
|||
|
-- http://spec.graphql.org/June2018/#sec-All-Variable-Usages-are-Allowed
|
|||
|
-- No input type coercion is allowed between variables: coercion
|
|||
|
-- rules only allow when translating a value from a literal. It is
|
|||
|
-- therefore not allowed to use an Int variable at a Float location,
|
|||
|
-- despite the fact that it is legal to use an Int literal at a
|
|||
|
-- Float location.
|
|||
|
-- Furthermore, it's also worth noting that there's one tricky case
|
|||
|
-- where we might allow a nullable variable at a non-nullable
|
|||
|
-- location: when either side has a non-null default value. That's
|
|||
|
-- because GraphQL conflates nullability and optinal fields (see
|
|||
|
-- Note [Optional fields and nullability] for more details).
|
|||
|
isVariableUsageAllowed
|
|||
|
:: Bool -- ^ does the location have a default value
|
|||
|
-> GType -- ^ the location type
|
|||
|
-> Variable -- ^ the variable
|
|||
|
-> Bool
|
|||
|
isVariableUsageAllowed hasLocationDefaultValue locationType variable
|
|||
|
| isNullable locationType = areTypesCompatible locationType variableType
|
|||
|
| not $ isNullable variableType = areTypesCompatible locationType variableType
|
|||
|
| hasLocationDefaultValue = areTypesCompatible locationType variableType
|
|||
|
| hasNonNullDefault variable = areTypesCompatible locationType variableType
|
|||
|
| otherwise = False
|
|||
|
where
|
|||
|
areTypesCompatible = compareTypes `on` \case
|
|||
|
TypeNamed _ n -> TypeNamed (Nullability True) n
|
|||
|
TypeList _ n -> TypeList (Nullability True) n
|
|||
|
variableType = vType variable
|
|||
|
hasNonNullDefault = vInfo >>> \case
|
|||
|
VIRequired _ -> False
|
|||
|
VIOptional _ value -> value /= VNull
|
|||
|
compareTypes = curry \case
|
|||
|
(TypeList lNull lType, TypeList vNull vType)
|
|||
|
-> checkNull lNull vNull && areTypesCompatible lType vType
|
|||
|
(TypeNamed lNull lType, TypeNamed vNull vType)
|
|||
|
-> checkNull lNull vNull && lType == vType
|
|||
|
_ -> False
|
|||
|
checkNull (Nullability expectedNull) (Nullability actualNull) =
|
|||
|
expectedNull || not actualNull
|