graphql-engine/server/src-lib/Hasura/GraphQL/Schema/SubscriptionStream.hs

277 lines
11 KiB
Haskell
Raw Normal View History

{-# LANGUAGE ApplicativeDo #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
-- | Generate the GraphQL schema types related to streaming subscriptions.
module Hasura.GraphQL.Schema.SubscriptionStream
( selectStreamTable,
)
where
server: refactor `MonadSchema` into `MonadMemoize` Followup to hasura/graphql-engine-mono#4713. The `memoizeOn` method, part of `MonadSchema`, originally had the following type: ```haskell memoizeOn :: (HasCallStack, Ord a, Typeable a, Typeable b, Typeable k) => TH.Name -> a -> m (Parser k n b) -> m (Parser k n b) ``` The reason for operating on `Parser`s specifically was that the `MonadSchema` effect would additionally initialize certain `Unique` values, which appear (nested in) the type of `Parser`. hasura/graphql-engine-mono#518 changed the type of `memoizeOn`, to additionally allow memoizing `FieldParser`s. These also contained a `Unique` value, which was similarly initialized by the `MonadSchema` effect. The new type of `memoizeOn` was as follows: ```haskell memoizeOn :: forall p d a b . (HasCallStack, HasDefinition (p n b) d, Ord a, Typeable p, Typeable a, Typeable b) => TH.Name -> a -> m (p n b) -> m (p n b) ``` Note the type `p n b` of the value being memoized: by choosing `p` to be either `Parser k` or `FieldParser`, both can be memoized. Also note the new `HasDefinition (p n b) d` constraint, which provided a `Lens` for accessing the `Unique` value to be initialized. A quick simplification is that the `HasCallStack` constraint has never been used by any code. This was realized in hasura/graphql-engine-mono#4713, by removing that constraint. hasura/graphql-engine-mono#2980 removed the `Unique` value from our GraphQL-related types entirely, as their original purpose was never truly realized. One part of removing `Unique` consisted of dropping the `HasDefinition (p n b) d` constraint from `memoizeOn`. What I didn't realize at the time was that this meant that the type of `memoizeOn` could be generalized and simplified much further. This PR finally implements that generalization. The new type is as follows: ```haskell memoizeOn :: forall a p. (Ord a, Typeable a, Typeable p) => TH.Name -> a -> m p -> m p ``` This change has a couple of consequences. 1. While constructing the schema, we often output `Maybe (Parser ...)`, to model that the existence of certain pieces of GraphQL schema sometimes depends on the permissions that a certain role has. The previous versions of `memoizeOn` were not able to handle this, as the only thing they could memoize was fully-defined (if not yet fully-evaluated) `(Field)Parser`s. This much more general API _would_ allow memoizing `Maybe (Parser ...)`s. However, we probably have to be continue being cautious with this: if we blindly memoize all `Maybe (Parser ...)`s, the resulting code may never be able to decide whether the value is `Just` or `Nothing` - i.e. it never commits to the existence-or-not of a GraphQL schema fragment. This would manifest as a non-well-founded knot tying, and this would get reported as an error by the implementation of `memoizeOn`. tl;dr: This generalization _technically_ allows for memoizing `Maybe` values, but we probably still want to avoid doing so. For this reason, the PR adds a specialized version of `memoizeOn` to `Hasura.GraphQL.Schema.Parser`. 2. There is no longer any need to connect the `MonadSchema` knot-tying effect with the `MonadParse` effect. In fact, after this PR, the `memoizeOn` method is completely GraphQL-agnostic, and so we implement hasura/graphql-engine-mono#4726, separating `memoizeOn` from `MonadParse` entirely - `memoizeOn` can be defined and implemented as a general Haskell typeclass method. Since `MonadSchema` has been made into a single-type-parameter type class, it has been renamed to something more general, namely `MonadMemoize`. Its only task is to memoize arbitrary `Typeable p` objects under a combined key consisting of a `TH.Name` and a `Typeable a`. Also for this reason, the new `MonadMemoize` has been moved to the more general `Control.Monad.Memoize`. 3. After this change, it's somewhat clearer what `memoizeOn` does: it memoizes an arbitrary value of a `Typeable` type. The only thing that needs to be understood in its implementation is how the manual blackholing works. There is no more semantic interaction with _any_ GraphQL code. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4725 Co-authored-by: Daniel Harvey <4729125+danieljharvey@users.noreply.github.com> GitOrigin-RevId: 089fa2e82c2ce29da76850e994eabb1e261f9c92
2022-08-04 16:44:14 +03:00
import Control.Monad.Memoize
import Data.Has
import Data.List.NonEmpty qualified as NE
import Data.Text.Extended ((<>>))
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
import Hasura.GraphQL.Parser.Class
import Hasura.GraphQL.Schema.Backend
import Hasura.GraphQL.Schema.BoolExp (AggregationPredicatesSchema)
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
import Hasura.GraphQL.Schema.Common
import Hasura.GraphQL.Schema.NamingCase
import Hasura.GraphQL.Schema.Options qualified as Options
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
import Hasura.GraphQL.Schema.Parser
( InputFieldsParser,
Kind (..),
Parser,
)
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
import Hasura.GraphQL.Schema.Parser qualified as P
import Hasura.GraphQL.Schema.Select (tablePermissionsInfo, tableSelectionList, tableWhereArg)
import Hasura.GraphQL.Schema.Table (getTableGQLName, tableSelectColumns, tableSelectPermissions)
import Hasura.GraphQL.Schema.Typename
import Hasura.Name qualified as Name
import Hasura.Prelude
import Hasura.RQL.IR.Select qualified as IR
import Hasura.RQL.IR.Value qualified as IR
import Hasura.RQL.Types.Column
import Hasura.RQL.Types.Metadata.Object
import Hasura.RQL.Types.SchemaCache
2022-05-27 20:21:22 +03:00
import Hasura.RQL.Types.Source
import Hasura.RQL.Types.SourceCustomization
import Hasura.RQL.Types.Subscription
import Hasura.RQL.Types.Table
import Hasura.SQL.AnyBackend qualified as AB
import Language.GraphQL.Draft.Syntax qualified as G
-- | Argument to limit the maximum number of results returned in a single batch.
cursorBatchSizeArg ::
forall n.
MonadParse n =>
NamingCase ->
InputFieldsParser n Int
cursorBatchSizeArg tCase =
fromIntegral
<$> P.field batchSizeName batchSizeDesc P.nonNegativeInt
where
batchSizeName = applyFieldNameCaseCust tCase Name._batch_size
batchSizeDesc = Just $ G.Description "maximum number of rows returned in a single batch"
-- | Cursor ordering enum fields
--
-- > enum cursor_ordering {
-- > ASC
-- > DESC
-- > }
cursorOrderingArgParser ::
forall b r m n.
MonadBuildSourceSchema b r m n =>
SchemaT r m (Parser 'Both n CursorOrdering)
cursorOrderingArgParser = do
sourceInfo :: SourceInfo b <- asks getter
let customization = _siCustomization sourceInfo
tCase = _rscNamingConvention customization
enumName = runMkTypename (_rscTypeNames customization) $ applyTypeNameCaseCust tCase Name._cursor_ordering
let description =
Just $
G.Description $
"ordering argument of a cursor"
pure $
P.enum enumName description $
NE.fromList -- It's fine to use fromList here because we know the list is never empty.
[ ( define enumNameVal,
snd enumNameVal
)
| enumNameVal <- [(Name._ASC, COAscending), (Name._DESC, CODescending)]
]
where
define (name, val) =
let orderingTypeDesc = bool "descending" "ascending" $ val == COAscending
in P.Definition name (Just $ G.Description $ orderingTypeDesc <> " ordering of the cursor") Nothing [] P.EnumValueInfo
-- | Argument to specify the ordering of the cursor.
-- > ordering: cursor_ordering
cursorOrderingArg ::
forall b r m n.
MonadBuildSourceSchema b r m n =>
SchemaT r m (InputFieldsParser n (Maybe CursorOrdering))
cursorOrderingArg = do
cursorOrderingParser' <- cursorOrderingArgParser @b
pure $ P.fieldOptional Name._ordering (Just $ G.Description "cursor ordering") cursorOrderingParser'
-- | Input fields parser to parse the value of a table's column
-- > column_name: column_type
streamColumnParserArg ::
forall b n m r.
MonadBuildSchema b r m n =>
ColumnInfo b ->
SchemaT r m (InputFieldsParser n (Maybe (ColumnInfo b, ColumnValue b)))
streamColumnParserArg colInfo = do
fieldParser <- typedParser colInfo
let fieldName = ciName colInfo
fieldDesc = ciDescription colInfo
pure do
P.fieldOptional fieldName fieldDesc fieldParser <&> fmap (colInfo,)
where
typedParser columnInfo = do
fmap IR.openValueOrigin <$> columnParser (ciType columnInfo) (G.Nullability $ ciIsNullable columnInfo)
-- | Input object parser whose keys are the column names and the values are the
-- initial values of those columns from where the streaming should start.
-- > input table_stream_cursor_value_input {
-- > col1: col1_type
-- > col2: col2_type
-- ...
-- > }
streamColumnValueParser ::
forall b r m n.
MonadBuildSchema b r m n =>
G.Name ->
[ColumnInfo b] ->
SchemaT r m (Parser 'Input n [(ColumnInfo b, ColumnValue b)])
streamColumnValueParser tableGQLName colInfos = do
sourceInfo :: SourceInfo b <- asks getter
let sourceName = _siName sourceInfo
customization = _siCustomization sourceInfo
tCase = _rscNamingConvention customization
mkTypename = runMkTypename $ _rscTypeNames customization
objName = mkTypename $ tableGQLName <> applyTypeNameCaseCust tCase Name.__stream_cursor_value_input
description = G.Description $ "Initial value of the column from where the streaming should start"
memoizeOn 'streamColumnValueParser (sourceName, tableGQLName) $ do
columnVals <- sequenceA <$> traverse streamColumnParserArg colInfos
pure $ P.object objName (Just description) columnVals <&> catMaybes
-- | Argument to accept the initial value from where the streaming should start.
-- > initial_value: table_stream_cursor_value_input!
streamColumnValueParserArg ::
forall b r m n.
MonadBuildSchema b r m n =>
G.Name ->
[ColumnInfo b] ->
SchemaT r m (InputFieldsParser n [(ColumnInfo b, ColumnValue b)])
streamColumnValueParserArg tableGQLName colInfos = do
tCase <- retrieve $ _rscNamingConvention . _siCustomization @b
columnValueParser <- streamColumnValueParser tableGQLName colInfos
pure do
P.field (applyFieldNameCaseCust tCase Name._initial_value) (Just $ G.Description "Stream column input with initial value") columnValueParser
-- | Argument to accept the cursor data. At the time of writing this, only a single
-- column cursor is supported and if multiple column cursors are provided,
-- then a parse error is thrown.
-- >
tableStreamColumnArg ::
forall b r m n.
MonadBuildSchema b r m n =>
G.Name ->
[ColumnInfo b] ->
SchemaT r m (InputFieldsParser n [IR.StreamCursorItem b])
tableStreamColumnArg tableGQLName colInfos = do
cursorOrderingParser <- cursorOrderingArg @b
streamColumnParser <- streamColumnValueParserArg tableGQLName colInfos
pure $ do
orderingArg <- cursorOrderingParser
columnArg <- streamColumnParser
pure $ (uncurry (IR.StreamCursorItem (fromMaybe COAscending orderingArg))) <$> columnArg
-- | Input object that contains the initial value of a column
-- along with how it needs to be ordered.
-- > input table_stream_cursor_input {
-- > initial_value: table_stream_cursor_value_input!
-- > ordering: cursor_ordering
-- > }
tableStreamCursorExp ::
forall m n r b.
MonadBuildSchema b r m n =>
TableInfo b ->
SchemaT r m (Parser 'Input n [(IR.StreamCursorItem b)])
tableStreamCursorExp tableInfo = do
sourceInfo :: SourceInfo b <- asks getter
let sourceName = _siName sourceInfo
tableName = tableInfoName tableInfo
customization = _siCustomization sourceInfo
tCase = _rscNamingConvention customization
mkTypename = runMkTypename $ _rscTypeNames customization
memoizeOn 'tableStreamCursorExp (sourceName, tableName) $ do
tableGQLName <- getTableGQLName tableInfo
columnInfos <- tableSelectColumns tableInfo
let objName = mkTypename $ tableGQLName <> applyTypeNameCaseCust tCase Name.__stream_cursor_input
description = G.Description $ "Streaming cursor of the table " <>> tableGQLName
columnParsers <- tableStreamColumnArg tableGQLName columnInfos
pure $ P.object objName (Just description) columnParsers
-- | Argument to accept the cursor input object.
-- > cursor: [table_stream_cursor_input]!
tableStreamCursorArg ::
forall b r m n.
MonadBuildSchema b r m n =>
TableInfo b ->
SchemaT r m (InputFieldsParser n [IR.StreamCursorItem b])
tableStreamCursorArg tableInfo = do
cursorParser <- tableStreamCursorExp tableInfo
pure $ do
cursorArgs <-
P.field cursorName cursorDesc $ P.list $ P.nullable cursorParser
pure $ concat $ catMaybes cursorArgs
where
cursorName = Name._cursor
cursorDesc = Just $ G.Description "cursor to stream the results returned by the query"
-- | Arguments to the streaming subscription field.
-- > table_stream (cursor: [table_stream_cursor_input]!, batch_size: Int!, where: table_bool_exp)
tableStreamArguments ::
forall b r m n.
( AggregationPredicatesSchema b,
MonadBuildSchema b r m n
) =>
TableInfo b ->
SchemaT r m (InputFieldsParser n (SelectStreamArgs b))
tableStreamArguments tableInfo = do
tCase <- retrieve $ _rscNamingConvention . _siCustomization @b
whereParser <- tableWhereArg tableInfo
cursorParser <- tableStreamCursorArg tableInfo
pure $ do
whereArg <- whereParser
cursorArg <-
cursorParser `P.bindFields` \case
[] -> parseError "one streaming column field is expected"
[c] -> pure c
_ -> parseError "multiple column cursors are not supported yet"
batchSizeArg <- cursorBatchSizeArg tCase
pure $
IR.SelectStreamArgsG whereArg batchSizeArg cursorArg
-- | Field parser for a streaming subscription for a table.
selectStreamTable ::
forall b r m n.
( MonadBuildSchema b r m n,
AggregationPredicatesSchema b,
BackendTableSelectSchema b
) =>
-- | table info
TableInfo b ->
-- | field display name
G.Name ->
-- | field description, if any
Maybe G.Description ->
SchemaT r m (Maybe (P.FieldParser n (StreamSelectExp b)))
selectStreamTable tableInfo fieldName description = runMaybeT $ do
sourceInfo :: SourceInfo b <- asks getter
let sourceName = _siName sourceInfo
tableName = tableInfoName tableInfo
Move RoleName into SchemaContext. ### Description I am not 100% sure about this PR; while I think the code is better this way, I'm willing to be convinced otherwise. In short, this PR moves the `RoleName` field into the `SchemaContext`, instead of being a nebulous `Has RoleName` constraint on the reader monad. The major upside of this is that it makes it an explicit named field, rather than something that must be given as part of a tuple of arguments when calling `runReader`. However, the downside is that it breaks the helper permissions functions of `Schema.Table`, which relied on `Has RoleName r`. This PR makes the choice of passing the role name explicitly to all of those functions, which in turn means first explicitly fetching the role name in a lot of places. It makes it more explicit when a schema building block relies on the role name, but is a bit verbose... ### Alternatives Some alternatives worth considering: - attempting something like `Has context r, Has RoleName context`, which would allow them to be independent from the context but still fetch the role name from the reader, but might require type annotations to not be ambiguous - keeping the permission functions the same, with `Has RoleName r`, and introducing a bunch of newtypes instead of using tuples to explicitly implement all the required `Has` instances - changing the permission functions to `Has SchemaContext r`, since they are functions used only to build the schema, and therefore may be allowed to be tied to the context. What do y'all think? PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5073 GitOrigin-RevId: 8fd09fafb54905a4d115ef30842d35da0c3db5d2
2022-07-29 18:37:09 +03:00
roleName <- retrieve scRole
selectPermissions <- hoistMaybe $ tableSelectPermissions roleName tableInfo
xStreamSubscription <- hoistMaybe $ streamSubscriptionExtension @b
stringifyNumbers <- retrieve Options.soStringifyNumbers
tableStreamArgsParser <- lift $ tableStreamArguments tableInfo
selectionSetParser <- MaybeT $ tableSelectionList tableInfo
lift $
memoizeOn 'selectStreamTable (sourceName, tableName, fieldName) $ do
pure $
P.setFieldParserOrigin (MOSourceObjId sourceName (AB.mkAnyBackend $ SMOTable @b tableName)) $
P.subselection fieldName description tableStreamArgsParser selectionSetParser
<&> \(args, fields) ->
IR.AnnSelectStreamG
{ IR._assnXStreamingSubscription = xStreamSubscription,
IR._assnFields = fields,
IR._assnFrom = IR.FromTable tableName,
IR._assnPerm = tablePermissionsInfo selectPermissions,
IR._assnArgs = args,
IR._assnStrfyNum = stringifyNumbers
}