graphql-engine/server/src-lib/Hasura/Backends/MSSQL/Schema/IfMatched.hs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

143 lines
5.3 KiB
Haskell
Raw Normal View History

{-# LANGUAGE ApplicativeDo #-}
-- | MSSQL Schema IfMatched
--
-- This module contains the building blocks for parsing @if_matched@ clauses
-- (represented as 'IfMatched'), which in the MSSQL backend are used to
-- implement upsert functionality.
--
-- These are used by 'Hasura.Backends.MSSQL.Instances.Schema.backendInsertParser' to
-- construct a mssql-specific schema parser for insert (and upsert) mutations.
module Hasura.Backends.MSSQL.Schema.IfMatched
( ifMatchedFieldParser,
)
where
import Data.Text.Extended
import Hasura.Backends.MSSQL.Types.Insert
import Hasura.Backends.MSSQL.Types.Internal (ScalarType (..))
import Hasura.GraphQL.Parser.Class
import Hasura.GraphQL.Schema.Backend
import Hasura.GraphQL.Schema.BoolExp
import Hasura.GraphQL.Schema.Common
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
import Hasura.GraphQL.Schema.Parser
( InputFieldsParser,
Kind (..),
Parser,
)
import Hasura.GraphQL.Schema.Parser qualified as P
import Hasura.GraphQL.Schema.Table
import Hasura.GraphQL.Schema.Typename (mkTypename)
import Hasura.Name qualified as Name
import Hasura.Prelude
import Hasura.RQL.IR.BoolExp
import Hasura.RQL.IR.Value
import Hasura.RQL.Types.Backend
import Hasura.RQL.Types.Column
import Hasura.RQL.Types.SchemaCache
2022-05-27 20:21:22 +03:00
import Hasura.RQL.Types.Source
import Hasura.RQL.Types.Table
import Hasura.SQL.Backend
import Language.GraphQL.Draft.Syntax qualified as G
-- | Field-parser for:
--
-- > if_matched: tablename_if_matched
-- >
-- > input tablename_if_matched {
-- > match_columns: [tablename_select_column!]
-- > update_columns: [tablename_update_columns!]
-- > where: tablename_bool_exp
-- > }
--
-- Note that the types ordinarily produced by this parser are only created if
-- the active role has /both/ select and update permissions to the table
-- @tablename@ defined /and/ these grant non-empty column permissions.
ifMatchedFieldParser ::
forall r m n.
MonadBuildSchema 'MSSQL r m n =>
2022-05-27 20:21:22 +03:00
SourceInfo 'MSSQL ->
TableInfo 'MSSQL ->
m (InputFieldsParser n (Maybe (IfMatched (UnpreparedValue 'MSSQL))))
2022-05-27 20:21:22 +03:00
ifMatchedFieldParser sourceInfo tableInfo = do
maybeObject <- ifMatchedObjectParser sourceInfo tableInfo
return $ withJust maybeObject $ P.fieldOptional Name._if_matched (Just "upsert condition")
-- | Parse a @tablename_if_matched@ object.
ifMatchedObjectParser ::
forall r m n.
MonadBuildSchema 'MSSQL r m n =>
2022-05-27 20:21:22 +03:00
SourceInfo 'MSSQL ->
TableInfo 'MSSQL ->
m (Maybe (Parser 'Input n (IfMatched (UnpreparedValue 'MSSQL))))
2022-05-27 20:21:22 +03:00
ifMatchedObjectParser sourceInfo tableInfo = runMaybeT do
-- Short-circuit if we don't have sufficient permissions.
updatePerms <- MaybeT $ _permUpd <$> tablePermissions tableInfo
2022-05-27 20:21:22 +03:00
matchColumnsEnum <- MaybeT $ tableInsertMatchColumnsEnum sourceInfo tableInfo
Role-invariant schema constructors We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema. Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects. We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e463199b1934d8645bd6cd37eddb64ae1 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type: ```haskell tableSelectionSet :: forall b r m n. MonadBuildSchema b r m n => SourceName -> TableInfo b -> SelPermInfo b -> m (Parser 'Output n (AnnotatedFields b)) ``` There are three reasons to change this. 1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125. 2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read. 3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068. Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter. One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role. So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608 GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
2022-02-17 11:16:20 +03:00
lift do
updateColumnsEnum <- updateColumnsPlaceholderParser tableInfo
tableGQLName <- getTableGQLName tableInfo
objectName <- mkTypename $ tableGQLName <> Name.__if_matched
Role-invariant schema constructors We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema. Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects. We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e463199b1934d8645bd6cd37eddb64ae1 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type: ```haskell tableSelectionSet :: forall b r m n. MonadBuildSchema b r m n => SourceName -> TableInfo b -> SelPermInfo b -> m (Parser 'Output n (AnnotatedFields b)) ``` There are three reasons to change this. 1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125. 2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read. 3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068. Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter. One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role. So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608 GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
2022-02-17 11:16:20 +03:00
let _imColumnPresets = partialSQLExpToUnpreparedValue <$> upiSet updatePerms
updateFilter = fmap partialSQLExpToUnpreparedValue <$> upiFilter updatePerms
objectDesc = G.Description $ "upsert condition type for table " <>> tableInfoName tableInfo
matchColumnsName = Name._match_columns
updateColumnsName = Name._update_columns
whereName = Name._where
2022-05-27 20:21:22 +03:00
whereExpParser <- boolExp sourceInfo tableInfo
Role-invariant schema constructors We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema. Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects. We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e463199b1934d8645bd6cd37eddb64ae1 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type: ```haskell tableSelectionSet :: forall b r m n. MonadBuildSchema b r m n => SourceName -> TableInfo b -> SelPermInfo b -> m (Parser 'Output n (AnnotatedFields b)) ``` There are three reasons to change this. 1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125. 2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read. 3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068. Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter. One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role. So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608 GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
2022-02-17 11:16:20 +03:00
pure $
P.object objectName (Just objectDesc) do
_imConditions <-
(\whereExp -> BoolAnd $ updateFilter : maybeToList whereExp)
<$> P.fieldOptional whereName Nothing whereExpParser
_imMatchColumns <-
P.fieldWithDefault matchColumnsName Nothing (G.VList []) (P.list matchColumnsEnum)
_imUpdateColumns <-
P.fieldWithDefault updateColumnsName Nothing (G.VList []) (P.list updateColumnsEnum) `P.bindFields` \cs ->
-- this can only happen if the placeholder was used
sequenceA cs `onNothing` parseError "erroneous column name"
Role-invariant schema constructors We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema. Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects. We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e463199b1934d8645bd6cd37eddb64ae1 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type: ```haskell tableSelectionSet :: forall b r m n. MonadBuildSchema b r m n => SourceName -> TableInfo b -> SelPermInfo b -> m (Parser 'Output n (AnnotatedFields b)) ``` There are three reasons to change this. 1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125. 2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read. 3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068. Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter. One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role. So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608 GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
2022-02-17 11:16:20 +03:00
pure $ IfMatched {..}
-- | Table insert_match_columns enum
--
-- Parser for an enum type that matches the columns that can be used
-- for insert match_columns for a given table.
-- Maps to the insert_match_columns object.
--
-- Return Nothing if there's no column the current user has "select"
-- permissions for.
tableInsertMatchColumnsEnum ::
forall r m n.
MonadBuildSchemaBase r m n =>
2022-05-27 20:21:22 +03:00
SourceInfo 'MSSQL ->
TableInfo 'MSSQL ->
m (Maybe (Parser 'Both n (Column 'MSSQL)))
2022-05-27 20:21:22 +03:00
tableInsertMatchColumnsEnum sourceInfo tableInfo = do
tableGQLName <- getTableGQLName @'MSSQL tableInfo
2022-05-27 20:21:22 +03:00
columns <- tableSelectColumns sourceInfo tableInfo
enumName <- mkTypename $ tableGQLName <> Name.__insert_match_column
let description =
Just $
G.Description $
"select match_columns of table " <>> tableInfoName tableInfo
pure $
P.enum enumName description
<$> nonEmpty
[ ( define $ ciName column,
ciColumn column
)
| column <- columns,
isMatchColumnValid column
]
where
define name =
server: Metadata origin for definitions (type parameter version v2) The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do. The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers. This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`. However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase. The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770 Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com> GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 18:52:26 +03:00
P.Definition name (Just $ G.Description "column name") Nothing P.EnumValueInfo
-- | Check whether a column can be used for match_columns.
isMatchColumnValid :: ColumnInfo 'MSSQL -> Bool
isMatchColumnValid = \case
-- Unfortunately MSSQL does not support comparison for TEXT types.
ColumnInfo {ciType = ColumnScalar TextType} -> False
_ -> True