Docs: Create a Python version of our ET Recipe for Content Moderation [Fixes #9909]

GITHUB_PR_NUMBER: 9931
GITHUB_PR_URL: https://github.com/hasura/graphql-engine/pull/9931

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/10384
Co-authored-by: Rutam Prita Mishra <47860497+Rutam21@users.noreply.github.com>
GitOrigin-RevId: f8a96186ad2c10e7a9c237f146298f4167debf08
This commit is contained in:
hasura-bot 2023-10-16 23:46:26 +05:30
parent 26f33bec0e
commit 9db5cb3075

View File

@ -134,6 +134,15 @@ Below, we've written an example of webhook in JavaScript that uses `body-parser`
earlier, this runs on port `4000`. If you're attempting to run this locally, follow the instructions below. If you're earlier, this runs on port `4000`. If you're attempting to run this locally, follow the instructions below. If you're
running this in a hosted environment, use this code as a guide to write your own webhook. running this in a hosted environment, use this code as a guide to write your own webhook.
<Tabs
defaultValue="javascript"
values={[
{ label: 'JavaScript', value: 'javascript' },
{ label: 'Python', value: 'python' },
]}
>
<TabItem value="javascript">
Init a new project with `npm init` and install the following dependencies: Init a new project with `npm init` and install the following dependencies:
```bash ```bash
@ -279,8 +288,175 @@ app.listen(4000, () => {
</details> </details>
You can run the server by running `node index.js` in your terminal. If you see the message You can run the server by running `node index.js` in your terminal.
`Webhook server is running on port 4000`, you're good to go!
</TabItem>
<TabItem value="python">
Make sure you have the necessary dependencies installed. You can use pip to install them:
```bash
pip install Flask[async] openai requests
```
<details>
<summary>
Then, create a new file called <code>index.py</code> and add the following code:
</summary>
```python
from flask import Flask, request, jsonify
import openai
import requests
import json
app = Flask(__name__)
# Hasura and OpenAI config
config = {
'url': '<YOUR_PROJECT_ENDPOINT>',
'secret': '<YOUR_ADMIN_SECRET>',
'openAIKey': '<YOUR_OPENAI_KEY>',
}
# OpenAI API config and client
openai.api_key = config["openAIKey"]
prompt = (
"You are a content moderator for SuperStore.com. A customer has left a review for a product they purchased. "
'Your response should only be a JSON object with two properties: "feedback" and "is_appropriate". '
'The "feedback" property should be a string containing your response to the customer only if the review "is_appropriate" value is false. '
"The feedback should be on why their review was flagged as inappropriate, not a response to their review. "
'The "is_appropriate" property should be a boolean indicating whether or not the review contains inappropriate content and it should be set by you.'
'"is_appropriate" is set to TRUE for appropriate content and to FALSE for inappropriate content.'
"The review is as follows:"
)
# Send a request to ChatGPT to see if the review contains inappropriate content
def check_review_with_chat_gpt(review_text):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": review_text},
],
)
response_content = response["choices"][0]["message"]["content"]
return json.loads(response_content)
except Exception as e:
print(f"Error evaluating content: {review_text}")
print(str(e))
return None
# Mark their review as visible if there's no feedback
async def mark_review_as_visible(user_review, review_id):
response = requests.post(
config["url"],
json={
"query": """
mutation UpdateReviewToVisible($review_id: uuid!) {
update_reviews_by_pk(pk_columns: {id: $review_id}, _set: {is_visible: true}) {
id
}
}
""",
"variables": {
"review_id": review_id,
},
},
headers={
"Content-Type": "application/json",
"x-hasura-admin-secret": config["secret"],
},
)
print(f"🎉 Review approved: {user_review}")
data = response.json()
return data.get("update_reviews_by_pk", None)
# Send a notification to the user if their review is flagged
def send_notification(user_review, user_id, review_feedback):
query = """
mutation InsertNotification($user_id: uuid!, $review_feedback: String!) {
insert_notifications_one(object: {user_id: $user_id, message: $review_feedback}) {
id
}
}
"""
variables = {"user_id": user_id, "review_feedback": review_feedback}
headers = {
"Content-Type": "application/json",
"x-hasura-admin-secret": config["secret"],
}
url = config["url"]
request_body = {"query": query, "variables": variables}
try:
response = requests.post(url, json=request_body, headers=headers)
# Raise an error for bad responses
response.raise_for_status()
response_json = response.json()
if "errors" in response_json:
# Handle the case where there are errors in the response
print(f"Failed to send a notification for: {user_review}")
print(response_json)
return None
# Extract the updated data from the response
data = response_json.get("data", {})
notification = data.get("insert_notifications_one", {})
print(
f"🚩 Review flagged. This is not visible to users: {user_review}\n🔔 The user has received the following notification: {review_feedback}"
)
return notification
except Exception as e:
# Handle exceptions or network errors
print(f"Error sending a notification for: {user_review}")
print(str(e))
return None
@app.route("/check-review", methods=["POST"])
async def check_review():
auth_header = request.headers.get("secret-authorization-string")
if auth_header != "super_secret_string_123":
return jsonify({"message": "Unauthorized"}), 401
# Parse the review from the event payload
data = request.get_json()
user_review = data["event"]["data"]["new"]["text"]
user_id = data["event"]["data"]["new"]["user_id"]
review_id = data["event"]["data"]["new"]["id"]
# Check the review with ChatGPT
moderation_report = check_review_with_chat_gpt(user_review)
# If the review is appropriate, mark it as visible; if not, send a notification to the user
if moderation_report["is_appropriate"]:
await mark_review_as_visible(user_review, review_id)
else:
send_notification(user_review, user_id, moderation_report["feedback"])
return jsonify({"GPTResponse": moderation_report})
if __name__ == "__main__":
app.run(port=4000)
```
</details>
You can run the server by running `python3 index.py` in your terminal.
</TabItem>
</Tabs>
If you see the message `Webhook server is running on port 4000`, you're good to go!
## Step 4: Test the setup ## Step 4: Test the setup