### Description
This PR adds the ability to perform remote joins from remote schemas in the engine. To do so, we alter the definition of an `ExecutionStep` targeting a remote schema: the `ExecStepRemote` constructor now expects a `Maybe RemoteJoins`. This new argument is used when processing the execution step, in the transport layer (either `Transport.HTTP` or `Transport.WebSocket`).
For this `Maybe RemoteJoins` to be extracted from a parsed query, this PR also extends the `Execute.RemoteJoin.Collect` module, to implement "collection" from a selection set. Not only do those new functions extract the remote joins, but they also apply all necessary transformations to the selection sets (such as inserting the necessary "phantom" fields used as join keys).
Finally in `Execute.RemoteJoin.Join`, we make two changes. First, we now always look for nested remote joins, regardless of whether the join we just performed went to a source or a remote schema; and second we adapt our join tree logic according to the special cases that were added to deal with remote server edge cases.
Additionally, this PR refactors / cleans / documents `Execute.RemoteJoin.RemoteServer`. This is not required as part of this change and could be moved to a separate PR if needed (a similar cleanup of `Join` is done independently in #3894). It also introduces a draft of a new documentation page for this project, that will be refined in the release PR that ships the feature (either #3069 or a copy of it).
While this PR extends the engine, it doesn't plug such relationships in the schema, meaning that, as of this PR, the new code paths in `Join` are technically unreachable. Adding the corresponding schema code and, ultimately, enabling the metadata API will be done in subsequent PRs.
### Keeping track of concrete type names
The main change this PR makes to the existing `Join` code is to handle a new reserved field we sometimes use when targeting remote servers: the `__hasura_internal_typename` field. In short, a GraphQL selection set can sometimes "branch" based on the concrete "runtime type" of the object on which the selection happens:
```graphql
query {
author(id: 53478) {
... on Writer {
name
articles {
title
}
}
... on Artist {
name
articles {
title
}
}
}
}
```
If both of those `articles` are remote joins, we need to be able, when we get the answer, to differentiate between the two different cases. We do this by asking for `__typename`, to be able to decide if we're in the `Writer` or the `Artist` branch of the query.
To avoid further processing / customization of results, we only insert this `__hasura_internal_typename: __typename` field in the query in the case of unions of interfaces AND if we have the guarantee that we will processing the request as part of the remote joins "folding": that is, if there's any remote join in this branch in the tree. Otherwise, we don't insert the field, and we leave that part of the response untouched.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3810
GitOrigin-RevId: 89aaf16274d68e26ad3730b80c2d2fdc2896b96c
### Description
There were several places in the codebase where we would either implement a generic container, or express the need for one. This PR extracts / creates all relevant containers, and adapts the relevant parts of the code to make use of said new generic containers. More specifically, it introduces the following modules:
- `Data.Set.Extended`, for new functions on `Data.Set`
- `Data.HashMap.Strict.Multi`, for hash maps that accept multiple values
- `Data.HashMap.Strict.NonEmpty`, for hash maps that can never be constructed as empty
- `Data.Trie`, for a generic implementation of a prefix tree
This PR makes use of those new containers in the following parts of the code:
- `Hasura.GraphQL.Execute.RemoteJoin.Types`
- `Hasura.RQL.Types.Endpoint*`
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3828
GitOrigin-RevId: e6c1b971bcb3f5ab66bc91d0fa4d0e9df7a0c6c6
### Description
This PR is one further step towards remote joins from remote schemas. It introduces a custom partial AST to represent queries to remote schemas in the IR: we now need to augment what used to be a straightforward GraphQL AST with additional information for remote join fields.
This PR does the minimal amount of work to adjust the rest of the code accordingly, using `Void` in all places that expect a type representing remote relationships.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3794
GitOrigin-RevId: 33fc317731aace71f82ad158a1951ea93350d6cc
I discovered and removed instances of Boolean Blindness about whether json numbers should be stringified or not.
Although quite far-reaching, this is a completely mechanical change and should have no observable impact outside the server code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3763
GitOrigin-RevId: c588891afd8a6923a135c736f6581a43a2eddbc7
TL;DR
---
We go from this:
```haskell
(|
withRecordInconsistency
( (|
modifyErrA
( do
(info, dependencies) <- liftEitherA -< buildRelInfo relDef
recordDependencies -< (metadataObject, schemaObject, dependencies)
returnA -< info
)
|) (addTableContext @b table . addRelationshipContext)
)
|) metadataObject
```
to this:
```haskell
withRecordInconsistencyM metadataObject $ do
modifyErr (addTableContext @b table . addRelationshipContext) $ do
(info, dependencies) <- liftEither $ buildRelInfo relDef
recordDependenciesM metadataObject schemaObject dependencies
return info
```
Background
---
We use Haskell's `Arrows` language extension to gain some syntactic sugar when working with `Arrow`s. `Arrow`s are a programming abstraction comparable to `Monad`s.
Unfortunately the syntactic sugar provided by this language extension is not very sweet.
This PR shows how we can sometimes avoid using `Arrow`s altogether, without loss of functionality or correctness. It is a demo of a technique that can be used to cut down the amount of `Arrows`-based code in our codebase by about half.
Approach
---
Although _in general_ not every `Monad` is an `Arrow`, specific `Arrow` instantiations are exactly as powerful as their `Monad` equivalents. Otherwise they wouldn't be very equivalent, would they?
Just like `liftEither` interprets the `Either e` monad into an arbitrary monad implementing `MonadError e`, we add `interpA` which interprets certain concrete monads such as `Writer w` into specific arrows, e.g. ones satisfying `ArrowWriter w`. This means that the part of the code that only uses such interpretable effects can be written _monadically_, and then used in _arrow_ constructions down the line.
This approach cannot be used for arrow effects which do not have a monadic equivalent. In our codebase, the only instance of this is `ArrowCache m`, implemented by the `Rule m` arrow. So code written with `ArrowCache m` in the context cannot be rewritten monadically using this technique.
See also
---
- #1827
- #2210
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3543
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
GitOrigin-RevId: eb79619c95f7a571bce99bc144ce42ee65d08505
## Description
Hopefully this is relatively self-explanatory: this change splits the helper functions we've used to extend QuickCheck from the orphan instances and generators that we have defined for unit tests. These have now been placed in `Test.QuickCheck.Extended` and `Hasura.QuickCheck.Instances`, respectively.
This change also adds some documentation to the functions defined in `Test.QuickCheck.Extended` in the spirit of similar functions defined by `Test.QuickCheck`, itself.
### Motivation
We should adhere to the existing convention of constructing "extension modules" for common libraries separately from the code that takes advantage of these.
Alone, this wouldn't be a reason to split up `Hasura.Generators`, but we should **also** follow a convention of defining **all** orphan instances in modules whose names clearly indicate that they exist solely for the purpose of exporting these orphan instances (e.g. `Hasura.QuickCheck.Instances`).
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3747
GitOrigin-RevId: fb856a790b4a39163f81481d4f900fafb1797ea6
- consistent qualified imports
- less convoluted initialization of pro logging HTTP manager
- pass pro HTTP manager directly instead of via Has
- remove some dead healthcheck code
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3639
GitOrigin-RevId: dfa7b9c62d1842a07a8514cdb77f1ed86064fb06
spec: https://github.com/hasura/graphql-engine-mono/pull/2278
Briefly:
- extend metadata so that allowlist entries get a new scope field
- update `add_collection_to_allowlist` to accept this new scope field,
and adds `update_scope_of_collection_in_allowlist` to change the scope
- scope can be global or role-based; a collection is available for every
role if it is global, and available to every listed role if it is role-based
- graphql-engine-oss is aware of role-based allowlist metadata; collections
with non-global scope are treated as if they weren't in the allowlist
To run the tests:
- `cabal run graphql-engine-tests -- unit --match Allowlist`
- py-tests against pro:
- launch `graphql-engine-pro` with `HASURA_GRAPHQL_ADMIN_SECRET` and `HASURA_GRAPHQL_ENABLE_ALLOWLIST`
- `pytest test_allowlist_queries.py --hge-urls=... --pg-urls=... --hge-key=... --test-allowlist-queries --pro-tests`
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2477
Co-authored-by: Anon Ray <616387+ecthiender@users.noreply.github.com>
Co-authored-by: Robert <132113+robx@users.noreply.github.com>
GitOrigin-RevId: 01f8026fbe59d8701e2de30986511a452fce1a99
## Remaining Work
- [x] changelog entry
- [x] more tests: `<backend>_delete_remote_relationship` is definitely untested
- [x] negative tests: we probably want to assert that there are some APIs we DON'T support
- [x] update the console to use the new API, if necessary
- [x] ~~adding the corresponding documentation for the API for other backends (only `pg_` was added here)~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3170
- [x] ~~deciding which backends should support this API~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3170
- [x] ~~deciding what to do about potentially overlapping schematic representations~~
- ~~cf. https://github.com/hasura/graphql-engine-mono/pull/3157#issuecomment-995307624~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3171
- [x] ~~add more descriptive versioning information to some of the types that are changing in this PR~~
- cf. https://github.com/hasura/graphql-engine-mono/pull/3157#discussion_r769830920
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3172
## Description
This PR fixes several important issues wrt. the remote relationship API.
- it fixes a regression introduced by [#3124](https://github.com/hasura/graphql-engine-mono/pull/3124), which prevented `<backend>_create_remote_relationship` from accepting the old argument format (break of backwards compatibility, broke the console)
- it removes the command `create_remote_relationship` added to the v1/metadata API as a work-around as part of [#3124](https://github.com/hasura/graphql-engine-mono/pull/3124)
- it reverts the subsequent fix in the console: [#3149](https://github.com/hasura/graphql-engine-mono/pull/3149)
Furthermore, this PR also addresses two other issues:
- THE DOCUMENTATION OF THE METADATA API WAS WRONG, and documented `create_remote_relationship` instead of `<backend>_create_remote_relationship`: this PR fixes this by adding `pg_` everywhere, but does not attempt to add the corresponding documentation for other backends, partly because:
- `<backend>_delete_remote_relationship` WAS BROKEN ON NON-POSTGRES BACKENDS; it always expected an argument parameterized by Postgres.
As of main, the `<backend>_(create|update|delete)_remote_relationship` commands are supported on Postgres, Citus, BigQuery, but **NOT MSSQL**. I do not know if this is intentional or not, if it even should be publicized or not, and as a result this PR doesn't change this.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3157
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
GitOrigin-RevId: 37e2f41522a9229a11c595574c3f4984317d652a
## Description
This PR fixes two issues:
- in [#2903](https://github.com/hasura/graphql-engine-mono/pull/2903), we introduced a new metadata representation of remote relationships, which broke parsing a metadata blob containing an old-style db-to-rs remote relationship
- in [#1179](https://github.com/hasura/graphql-engine-mono/pull/1179), we silently and mistakenly deprecated `create_remote_relationship` in favour of `<backend>_create_remote_relationship`
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3124
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
Co-authored-by: Antoine Leblanc <1618949+nicuveo@users.noreply.github.com>
GitOrigin-RevId: 45481db7a8d42c7612e938707cd2d652c4c81bf8
GraphQL types can refer to each other in a circular way. The PDV framework used to use values of type `Unique` to recognize two fragments of GraphQL schema as being the same instance. Internally, this is based on `Data.Unique` from the `base` package, which simply increases a counter on every creation of a `Unique` object.
**NB**: The `Unique` values are _not_ used for knot tying the schema combinators themselves (i.e. `Parser`s). The knot tying for `Parser`s is purely based on keys provided to `memoizeOn`. The `Unique` values are _only_ used to recognize two pieces of GraphQL _schema_ as being identical. Originally, the idea was that this would help us with a perfectly correct identification of GraphQL types. But this fully correct equality checking of GraphQL types was never implemented, and does not seem to be necessary to prevent bugs.
Specifically, these `Unique` values are stored as part of `data Definition a`, which specifies a part of our internal abstract syntax tree for the GraphQL types that we expose. The `Unique` values get initialized by the `SchemaT` effect.
In #2894 and #2895, we are experimenting with how (parts of) the GraphQL types can be hidden behind certain permission predicates. This would allow a single GraphQL schema in memory to serve all roles, implementing #2711. The permission predicates get evaluated at query parsing time when we know what role is doing a certain request, thus outputting the correct GraphQL types for that role.
If the approach of #2895 is followed, then the `Definition` objects, and thus the `Unique` values, would be hidden behind the permission predicates. Since the permission predicates are evaluated only after the schema is already supposed to be built, this means that the permission predicates would prevent us from initializing the `Unique` values, rendering them useless.
The simplest remedy to this is to remove our usage of `Unique` altogether from the GraphQL schema and schema combinators. It doesn't serve a functional purpose, doesn't prevent bugs, and requires extra bookkeeping.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2980
GitOrigin-RevId: 50d3f9e0b9fbf578ac49c8fc773ba64a94b1f43d
### Description
This PR changes the internal representation of a parsed remote schema. We were still using a list of type definitions, meaning every time we were doing a type lookup we had to iterate through a linked list! 🙀 It was very noticeable on large schemas, that need to do a lot of lookups. This PR consequently changes the internal representation to a HashMap. Building the OneGraph schema on my machine now takes **23 seconds**, compared to **367 seconds** before this patch.
Some important points:
- ~~this PR removes a check for type duplication in remote schemas; it's unclear to me whether that's something we need to add back or not~~ (no longer true)
- this PR makes it obvious that we do not distinguish between "this remote schema is missing type X" and "this remote schema expects type X to be an object, but it's a scalar"; this PR doesn't change anything about it, but adds a comment where we could surface that error (see [2991](https://github.com/hasura/graphql-engine-mono/issues/2991))
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2963
GitOrigin-RevId: f5c96ad40f4e0afcf8cef635b4d64178111f98d3
>
High-Level TODO:
* [x] Code Changes
* [x] Tests
* [x] Check that pro/multitenant build ok
* [x] Documentation Changes
* [x] Updating this PR with full details
* [ ] Reviews
* [ ] Ensure code has all FIXMEs and TODOs addressed
* [x] Ensure no files are checked in mistakenly
* [x] Consider impact on console, cli, etc.
### Description
>
This PR adds support for adding set-cookie header on the response from the auth webhook. If the set-cookie header is sent by the webhook, it will be forwarded in the graphQL engine response.
Fixes a bug in test-server.sh: testing of get-webhook tests was done by POST method and vice versa. To fix, the parameters were swapped.
### Changelog
- [x] `CHANGELOG.md` is updated with user-facing content relevant to this PR.
### Affected components
- [x] Server
- [ ] Console
- [ ] CLI
- [x] Docs
- [ ] Community Content
- [ ] Build System
- [x] Tests
- [ ] Other (list it)
### Related Issues
->
Closes [#2269](https://github.com/hasura/graphql-engine/issues/2269)
### Solution and Design
>
### Steps to test and verify
>
Please refer to the docs to see how to send the set-cookie header from webhook.
### Limitations, known bugs & workarounds
>
- Support for only set-cookie header forwarding is added
- the value forwarded in the set-cookie header cannot be validated completely, the [Cookie](https://hackage.haskell.org/package/cookie) package has been used to parse the header value and any unnecessary information is stripped off before forwarding the header. The standard given in [RFC6265](https://datatracker.ietf.org/doc/html/rfc6265) has been followed for the Set-Cookie format.
### Server checklist
#### Catalog upgrade
Does this PR change Hasura Catalog version?
- [x] No
- [ ] Yes
- [ ] Updated docs with SQL for downgrading the catalog
#### Metadata
Does this PR add a new Metadata feature?
- [x] No
#### GraphQL
- [x] No new GraphQL schema is generated
- [ ] New GraphQL schema is being generated:
- [ ] New types and typenames are correlated
#### Breaking changes
- [x] No Breaking changes
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2538
Co-authored-by: Robert <132113+robx@users.noreply.github.com>
GitOrigin-RevId: d9047e997dd221b7ce4fef51911c3694037e7c3f
We'll see if this improves compile times at all, but I think it's worth
doing as at least the most minimal form of module documentation.
This was accomplished by first compiling everything with
-ddump-minimal-imports, and then a bunch of scripting (with help from
ormolu)
**EDIT** it doesn't seem to improve CI compile times but the noise floor is high as it looks like we're not caching library dependencies anymore
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2730
GitOrigin-RevId: 667eb8de1e0f1af70420cbec90402922b8b84cb4
The only real use was for the dubious multitenant option
--consoleAssetsVersion, which actually overrode not just
the assets version. I.e., as far as I can tell, if you pass
--consoleAssetsVersion to multitenant, that version will
also make it into e.g. HTTP client user agent headers as
the proper graphql-engine version.
I'm dropping that option, since it seems unused in production
and I don't want to go to the effort of fixing it, but am happy
to look into that if folks feels strongly that it should be
kept.
(Reason for attacking this is that I was looking into http
client things around blacklisting, and the versioning thing
is a bit painful around http client headers.)
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2458
GitOrigin-RevId: a02b05557124bdba9f65e96b3aa2746aeee03f4a
This commit applies ormolu to the whole Haskell code base by running `make format`.
For in-flight branches, simply merging changes from `main` will result in merge conflicts.
To avoid this, update your branch using the following instructions. Replace `<format-commit>`
by the hash of *this* commit.
$ git checkout my-feature-branch
$ git merge <format-commit>^ # and resolve conflicts normally
$ make format
$ git commit -a -m "reformat with ormolu"
$ git merge -s ours post-ormolu
https://github.com/hasura/graphql-engine-mono/pull/2404
GitOrigin-RevId: 75049f5c12f430c615eafb4c6b8e83e371e01c8e
This is a follow-up to #1959.
Today, I spent a while in review figuring out that a harmless PR change didn't do anything,
because it was moving from a `runLazy...` to something without the `Lazy`. So let's get
that source of confusion removed.
This should be a bit easier to review commit by commit, since some of the functions had
confusing names. (E.g. there was a misnamed `Migrate.Internal.runTx` before.)
The change should be a no-op.
https://github.com/hasura/graphql-engine-mono/pull/2335
GitOrigin-RevId: 0f284c4c0f814482d7827e7732a6d49e7735b302
### A long tale about encoding
GraphQL has an [introspection system](http://spec.graphql.org/June2018/#sec-Introspection), which allows its schema to be introspected. This is what we use to introspect [remote schemas](41383e1f88/server/src-rsr/introspection.json). There is one place in the introspection where we might find GraphQL values: the default value of an argument.
```json
{
"fields": [
{
"name": "echo",
"args": [
{
"name": "msg",
"defaultValue": "\"Hello\\nWorld!\""
}
]
}
]
}
```
Note that GraphQL's introspection is transport agnostic: the default value isn't returned as a JSON value, but as a _string-encoded GraphQL Value_. In this case, the value is the GraphQL String `"Hello\nWorld!"`. Embedded into a string, it is encoded as: `"\"Hello\\nWorld!\""`.
When we [parse that value](41383e1f88/server/src-lib/Hasura/GraphQL/RemoteServer.hs (L351)), we first extract that JSON string, to get its content, `"Hello\nWorld!"`, then use our [GraphQL Parser library](21c1ddfb41/src/Language/GraphQL/Draft/Parser.hs (L200)) to interpret this: we find the double quote, understand that the content is a String, unescape the backslashes, and end up with the desired string value: `['H', 'e', 'l', 'l', 'o', '\n', 'W', 'o', 'r', 'l', 'd', '!']`. This all works fine.
However, there was a bug in the _printer_ part of our parser library: when printing back a String value, we would not re-escape characters properly. In practice, this meant that the GraphQL String `"Hello\nWorld"` would be encoded in JSON as `"\"Hello\nWorld!\""`. Note how the `\n` is not properly double-escaped. This led to a variety of problems, as described in #1965:
- we would successfully parse a remote schema containing such characters in its default values, but then would print those erroneous JSON values in our introspection, which would _crash the console_
- we would inject those default values in queries sent to remote schemas, and print them wrong doing so, sending invalid values to remote schemas and getting errors in result
It turns out that this bug had been lurking in the code for a long time: I combed through the history of [the parser library](https://github.com/hasura/graphql-parser-hs), and as far as I can tell, this bug has always been there. So why was it never caught? After all, we do have [round trip tests](21c1ddfb41/test/Spec.hs (L52)) that print + parse arbitrary values and check that we get the same value as a result. They do use any arbitrary unicode character in their generated strings. So... that should have covered it, right?
Well... it turns out that [the tests were ignoring errors](7678066c49/test/Spec.hs (L45)), and would always return "SUCCESS" in CI, even if they failed... Furthermore, the sample size was small enough that, most of the time, _they would not hit such characters_. Running the tests locally on a loop, I only got errors ~10% of the time...
This was all fixed in hasura/graphql-parser-hs#44. This was probably one of Hasura's longest standing bugs? ^^'
### Description
This PR bumps the version of graphql-parser-hs in the engine, and switches some of our own arbitrary tests to use unicode characters in text rather than alphanumeric values. It turns out those tests were much better at hitting "bad" values, and that they consistently failed when generating arbitrary unicode characters.
https://github.com/hasura/graphql-engine-mono/pull/2031
GitOrigin-RevId: 54fa48270386a67336e5544351691619e0684559
### Description
A first PR, #1947, removed all the `Arbitrary` stuff from our codebase. But #1740, merged on the same day, added some tests relying on `Arbitrary`. In the merge process, some unneeded `Arbitrary` code got reintroduced.
This PR removes all `Arbitrary` stuff from `src-lib`, and cleans / refactor `Hasura.Generator` in `src-test` to only reduce it to the bare minimum amount of `Arbitrary` instances.
https://github.com/hasura/graphql-engine-mono/pull/1957
GitOrigin-RevId: 7e76009bb022205e3737fca45749411a266cc08c
Query plan caching was introduced by - I believe - hasura/graphql-engine#1934 in order to reduce the query response latency. During the development of PDV in hasura/graphql-engine#4111, it was found out that the new architecture (for which query plan caching wasn't implemented) performed comparably to the pre-PDV architecture with caching. Hence, it was decided to leave query plan caching until some day in the future when it was deemed necessary.
Well, we're in the future now, and there still isn't a convincing argument for query plan caching. So the time has come to remove some references to query plan caching from the codebase. For the most part, any code being removed would probably not be very well suited to the post-PDV architecture of query execution, so arguably not much is lost.
Apart from simplifying the code, this PR will contribute towards making the GraphQL schema generation more modular, testable, and easier to profile. I'd like to eventually work towards a situation in which it's easy to generate a GraphQL schema parser *in isolation*, without being connected to a database, and then parse a GraphQL query *in isolation*, without even listening any HTTP port. It is important that both of these operations can be examined in detail, and in isolation, since they are two major performance bottlenecks, as well as phases where many important upcoming features hook into.
Implementation
The following have been removed:
- The entirety of `server/src-lib/Hasura/GraphQL/Execute/Plan.hs`
- The core phases of query parsing and execution no longer have any references to query plan caching. Note that this is not to be confused with query *response* caching, which is not affected by this PR. This includes removal of the types:
- - `Opaque`, which is replaced by a tuple. Note that the old implementation was broken and did not adequately hide the constructors.
- - `QueryReusability` (and the `markNotReusable` method). Notably, the implementation of the `ParseT` monad now consists of two, rather than three, monad transformers.
- Cache-related tests (in `server/src-test/Hasura/CacheBoundedSpec.hs`) have been removed .
- References to query plan caching in the documentation.
- The `planCacheOptions` in the `TenantConfig` type class was removed. However, during parsing, unrecognized fields in the YAML config get ignored, so this does not cause a breaking change. (Confirmed manually, as well as in consultation with @sordina.)
- The metrics no longer send cache hit/miss messages.
There are a few places in which one can still find references to query plan caching:
- We still accept the `--query-plan-cache-size` command-line option for backwards compatibility. The `HASURA_QUERY_PLAN_CACHE_SIZE` environment variable is not read.
https://github.com/hasura/graphql-engine-mono/pull/1815
GitOrigin-RevId: 17d92b254ec093c62a7dfeec478658ede0813eb7
Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST.
This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible).
The approach now changes to this:
1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed.
1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary.
1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response.
### Known issues
1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR.
1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR.
1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins.
1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST.
1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code.
### Notes to the reviewers
I think it is best reviewed commit by commit.
1. The first one is very straight forward.
1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore
1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor
1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server.
https://github.com/hasura/graphql-engine-mono/pull/1497
GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
This reverts the remote schema type customisation and namespacing feature temporarily as we test for certain conditions.
GitOrigin-RevId: f8ee97233da4597f703970c3998664c03582d8e7
This claws back ~7min from integration tests (run serially, as with `dev.sh test --integration`
Further improvements would do well to focus on optimizing metadata operations, as `setup` dominates
GitOrigin-RevId: 76637d6fa953c2404627c4391447a05bf09355fa
Modifying schema-sync implementation to use polling for OSS/Pro. Invalidations are now propagated via the `hdb_catalog.hdb_schema_notifications` table in OSS/Pro. Pattern followed is now a Listener/Processor split with Cloud listening for changes via a LISTEN/NOTIFY channel and OSS polling for resource version changes in the metadata table. See issue #460 for more details.
GitOrigin-RevId: 48434426df02e006f4ec328c0d5cd5b30183db25
Previously invalid REST endpoints would throw errors during schema cache build.
This PR changes the validation to instead add to the inconsistent metadata objects in order to allow use of `allow_inconsistent_metadata` with inconsistent REST endpoints.
All non-fatal endpoint definition errors are returned as inconsistent metadata warnings/errors depending on the use of `allow_inconsistent_metadata`. The endpoints with issues are then created and return informational runtime errors when they are called.
Console impact when creating endpoints is that error messages now refer to metadata inconsistencies rather than REST feature at the top level:
![image](https://user-images.githubusercontent.com/92299/109911843-ede9ec00-7cfe-11eb-9c55-7cf924d662a6.png)
<img width="969" alt="image" src="https://user-images.githubusercontent.com/92299/110258597-8336fa00-7ff7-11eb-872c-bfca945aa0e8.png">
Note: Conflicting endpoints generate one error per conflicting set of endpoints due to the implementation of `groupInconsistentMetadataById` and `imObjectIds`. This is done to ensure that error messages are terse, but may pose errors if there are some assumptions made surrounding `imObjectIds`.
Related to https://github.com/hasura/graphql-engine-mono/pull/473 (Allow Inconsistent Metadata (v2) #473 (Merged))
---
### Kodiak commit message
Changes the validation to use inconsistent metadata objects for REST endpoint issues.
#### Commit title
Inconsistent metadata for REST endpoints
GitOrigin-RevId: b9de971208e9bb0a319c57df8dace44cb115ff66
fixes#3868
docker image - `hasura/graphql-engine:inherited-roles-preview-48b73a2de`
Note:
To be able to use the inherited roles feature, the graphql-engine should be started with the env variable `HASURA_GRAPHQL_EXPERIMENTAL_FEATURES` set to `inherited_roles`.
Introduction
------------
This PR implements the idea of multiple roles as presented in this [paper](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/FGALanguageICDE07.pdf). The multiple roles feature in this PR can be used via inherited roles. An inherited role is a role which can be created by combining multiple singular roles. For example, if there are two roles `author` and `editor` configured in the graphql-engine, then we can create a inherited role with the name of `combined_author_editor` role which will combine the select permissions of the `author` and `editor` roles and then make GraphQL queries using the `combined_author_editor`.
How are select permissions of different roles are combined?
------------------------------------------------------------
A select permission includes 5 things:
1. Columns accessible to the role
2. Row selection filter
3. Limit
4. Allow aggregation
5. Scalar computed fields accessible to the role
Suppose there are two roles, `role1` gives access to the `address` column with row filter `P1` and `role2` gives access to both the `address` and the `phone` column with row filter `P2` and we create a new role `combined_roles` which combines `role1` and `role2`.
Let's say the following GraphQL query is queried with the `combined_roles` role.
```graphql
query {
employees {
address
phone
}
}
```
This will translate to the following SQL query:
```sql
select
(case when (P1 or P2) then address else null end) as address,
(case when P2 then phone else null end) as phone
from employee
where (P1 or P2)
```
The other parameters of the select permission will be combined in the following manner:
1. Limit - Minimum of the limits will be the limit of the inherited role
2. Allow aggregations - If any of the role allows aggregation, then the inherited role will allow aggregation
3. Scalar computed fields - same as table column fields, as in the above example
APIs for inherited roles:
----------------------
1. `add_inherited_role`
`add_inherited_role` is the [metadata API](https://hasura.io/docs/1.0/graphql/core/api-reference/index.html#schema-metadata-api) to create a new inherited role. It accepts two arguments
`role_name`: the name of the inherited role to be added (String)
`role_set`: list of roles that need to be combined (Array of Strings)
Example:
```json
{
"type": "add_inherited_role",
"args": {
"role_name":"combined_user",
"role_set":[
"user",
"user1"
]
}
}
```
After adding the inherited role, the inherited role can be used like single roles like earlier
Note:
An inherited role can only be created with non-inherited/singular roles.
2. `drop_inherited_role`
The `drop_inherited_role` API accepts the name of the inherited role and drops it from the metadata. It accepts a single argument:
`role_name`: name of the inherited role to be dropped
Example:
```json
{
"type": "drop_inherited_role",
"args": {
"role_name":"combined_user"
}
}
```
Metadata
---------
The derived roles metadata will be included under the `experimental_features` key while exporting the metadata.
```json
{
"experimental_features": {
"derived_roles": [
{
"role_name": "manager_is_employee_too",
"role_set": [
"employee",
"manager"
]
}
]
}
}
```
Scope
------
Only postgres queries and subscriptions are supported in this PR.
Important points:
-----------------
1. All columns exposed to an inherited role will be marked as `nullable`, this is done so that cell value nullification can be done.
TODOs
-------
- [ ] Tests
- [ ] Test a GraphQL query running with a inherited role without enabling inherited roles in experimental features
- [] Tests for aggregate queries, limit, computed fields, functions, subscriptions (?)
- [ ] Introspection test with a inherited role (nullability changes in a inherited role)
- [ ] Docs
- [ ] Changelog
Co-authored-by: Vamshi Surabhi <6562944+0x777@users.noreply.github.com>
GitOrigin-RevId: 3b8ee1e11f5ceca80fe294f8c074d42fbccfec63
fixes https://github.com/hasura/graphql-engine/issues/6449
A while back we added [support for customizing JWT claims](https://github.com/hasura/graphql-engine/pull/3575) and this enabled to map a session variable to any value within the unregistered claims, but as reported in #6449 , users aren't able to map the `x-hasura-user-id` session variable to the `sub` standard JWT claim.
This PR fixes the above issue by allowing mapping session variables to standard JWT claims as well.
GitOrigin-RevId: d3e63d7580adac55eb212e0a1ecf7c33f5b3ac4b
fixes https://github.com/hasura/graphql-engine/issues/2109
This PR accepts a new config `allowed_skew` in the JWT config to provide for some leeway while comparing the JWT expiry time.
GitOrigin-RevId: ef50cf77d8e2780478685096ed13794b5c4c9de4
This PR is a combination of the following other PRs:
- #169: move HasHttpManager out of RQL.Types
- #170: move UserInfoM to Hasura.Session
- #179: delete dead code from RQL.Types
- #180: move event related code to EventTrigger
GitOrigin-RevId: d97608d7945f2c7a0a37e307369983653eb62eb1
This is an incremental PR towards https://github.com/hasura/graphql-engine/pull/5797
Co-authored-by: Anon Ray <ecthiender@users.noreply.github.com>
GitOrigin-RevId: a6cb8c239b2ff840a0095e78845f682af0e588a9
* Remove unused ExitCode constructors
* Simplify shutdown logic
* Update server/src-lib/Hasura/App.hs
Co-authored-by: Brandon Simmons <brandon@hasura.io>
* WIP: fix zombie thread issue
* Use forkCodensity for the schema sync thread
* Use forkCodensity for the oauthTokenUpdateWorker
* Use forkCodensity for the schema update processor thread
* Add deprecation notice
* Logger threads use Codensity
* Add the MonadFix instance for Codensity to get log-sender thread logs
* Move outIdleGC out to the top level, WIP
* Update forkImmortal fuction for more logging info
* add back the idle GC to Pro
* setupAuth
* use ImmortalThreadLog
* Fix tests
* Add another finally block
* loud warnings
* Change log level
* hlint
* Finalize the logger in the correct place
* Add ManagedT
* Update server/src-lib/Hasura/Server/Auth.hs
Co-authored-by: Brandon Simmons <brandon@hasura.io>
* Comments etc.
Co-authored-by: Brandon Simmons <brandon@hasura.io>
Co-authored-by: Naveen Naidu <naveennaidu479@gmail.com>
GitOrigin-RevId: 156065c5c3ace0e13d1997daef6921cc2e9f641c
Generalize TableCoreInfoRM, TableCoreCacheRT, some table metadata data types, generalize fromPGCol to fromCol, generalize some schema cache functions, prepare some enum schema cache code for generalization
GitOrigin-RevId: a65112bc1688e00fd707d27af087cb2585961da2
An incremental PR towards https://github.com/hasura/graphql-engine/pull/5797
- Expands `MonadMetadataStorage` with operations related to async actions and setting/updating metadata
GitOrigin-RevId: 53386b7b2d007e162050b826d0708897f0b4c8f6
This issue was very tricky to track down, but fortunately easy to fix.
The interaction here is subtle enough that it’s difficult to put into
English what would go wrong in what circumstances, but the new unit test
captures precisely that interaction to ensure it remains fixed.
* improve jsonpath parser to accept special characters and property tests for the same
* make the JWTClaimsMapValueG parametrizable
* add documentation in the JWT file
* modify processAuthZHeader
Co-authored-by: Karthikeyan Chinnakonda <karthikeyan@hasura.io>
Co-authored-by: Marion Schleifer <marion@hasura.io>
Also some minor refactoring of bounded cache module:
- the maxBound check in `trim` was confusing and unnecessary
- consequently trim was unnecessary for lookupPure
Also add some basic tests
These must have gotten messed up during a refactor. As a consequence
almost all samples received so far fall into the single erroneous 0 to
1K seconds (originally supposed to be 1ms?) bucket.
I also re-thought what the numbers should be, but these are still
arbitrary and might want adjusting in the future.
* Pass environment variables around as a data structure, via @sordina
* Resolving build error
* Adding Environment passing note to changelog
* Removing references to ILTPollerLog as this seems to have been reintroduced from a bad merge
* removing commented-out imports
* Language pragmas already set by project
* Linking async thread
* Apply suggestions from code review
Use `runQueryTx` instead of `runLazyTx` for queries.
* remove the non-user facing entry in the changelog
Co-authored-by: Phil Freeman <paf31@cantab.net>
Co-authored-by: Phil Freeman <phil@hasura.io>
Co-authored-by: Vamshi Surabhi <0x777@users.noreply.github.com>
The bulk of changes here is some shifting of code around and a little
parameterizing of functions for easier testing.
Also: comments, some renaming for clarity/less-chance-for-misue.
* config options for internal errors for non-admin role, close#4031
More detailed action debug info is added in response 'internal' field
* add docs
* update CHANGELOG.md
* set admin graphql errors option in ci tests, minor changes to docs
* fix tests
Don't use any auth for sync actions error tests. The request body
changes based on auth type in session_variables (x-hasura-auth-mode)
* Apply suggestions from code review
Co-Authored-By: Marion Schleifer <marion@hasura.io>
* use a new sum type to represent the inclusion of internal errors
As suggested in review by @0x777
-> Move around few modules in to specific API folder
-> Saperate types from Init.hs
* fix tests
Don't use any auth for sync actions error tests. The request body
changes based on auth type in session_variables (x-hasura-auth-mode)
* move 'HttpResponse' to 'Hasura.HTTP' module
* update change log with breaking change warning
* Update CHANGELOG.md
Co-authored-by: Marion Schleifer <marion@hasura.io>
Co-authored-by: Tirumarai Selvan <tiru@hasura.io>
* basic doc for actions
* custom_types, sync and async actions
* switch to graphql-parser-hs on github
* update docs
* metadata import/export
* webhook calls are now supported
* relationships in sync actions
* initialise.sql is now in sync with the migration file
* fix metadata tests
* allow specifying arguments of actions
* fix blacklist check on check_build_worthiness job
* track custom_types and actions related tables
* handlers are now triggered on async actions
* default to pgjson unless a field is involved in relationships, for generating definition list
* use 'true' for action filter for non admin role
* fix create_action_permission sql query
* drop permissions when dropping an action
* add a hdb_role view (and relationships) to fetch all roles in the system
* rename 'webhook' key in action definition to 'handler'
* allow templating actions wehook URLs with env vars
* add 'update_action' /v1/query type
* allow forwarding client headers by setting `forward_client_headers` in action definition
* add 'headers' configuration in action definition
* handle webhook error response based on status codes
* support array relationships for custom types
* implement single row mutation, see https://github.com/hasura/graphql-engine/issues/3731
* single row mutation: rename 'pk_columns' -> 'columns' and no-op refactor
* use top level primary key inputs for delete_by_pk & account select permissions for single row mutations
* use only REST semantics to resolve the webhook response
* use 'pk_columns' instead of 'columns' for update_by_pk input
* add python basic tests for single row mutations
* add action context (name) in webhook payload
* Async action response is accessible for non admin roles only if
the request session vars equals to action's
* clean nulls, empty arrays for actions, custom types in export metadata
* async action mutation returns only the UUID of the action
* unit tests for URL template parser
* Basic sync actions python tests
* fix output in async query & add async tests
* add admin secret header in async actions python test
* document async action architecture in Resolve/Action.hs file
* support actions returning array of objects
* tests for list type response actions
* update docs with actions and custom types metadata API reference
* update actions python tests as per #f8e1330
Co-authored-by: Tirumarai Selvan <tirumarai.selvan@gmail.com>
Co-authored-by: Aravind Shankar <face11301@gmail.com>
Co-authored-by: Rakesh Emmadi <12475069+rakeshkky@users.noreply.github.com>
* Add downgrade command
* Add docs per @lexi-lambda's suggestions
* make tests pass
* Update hdb_version once, from Haskell
* more work based on feedback
* Improve the usage message
* Small docs changes
* Test downgrades exist for each tag
* Update downgrading.rst
* Use git-log to find tags which are ancestors of the current commit
Co-authored-by: Vamshi Surabhi <0x777@users.noreply.github.com>
We upload a set of accumulating timers and counters to track service
time for different types of operations, across several dimensions (e.g.
did we hit the plan cache, was a remote involved, etc.)
Also...
Standardize on DiffTime as a standard duration type, and try to use it
consistently.
See discussion here:
https://github.com/hasura/graphql-engine/pull/3584#pullrequestreview-340679369
It should be possible to overwrite that module so the new threadDelay
sticks per the pattern in #3705 blocked on #3558
Rename the Control.Concurrent.Extended.threadDelay to `sleep` since a
naive use with a literal argument would be very bad!
We catch a bug in 'computeTimeDiff'.
Add convenient 'Read' instances to the time unit utility types. Make
'Second' a newtype to support this.
This fixes#3759. Also, while we’re at it, also improve the way
invalidations are synced across instances so enums and remote schemas
are appropriately reloaded by the schema syncing process.