Codecs for event triggers, including webhook transforms. These are not hooked into the higher-up table metadata codec yet because some backend implementations implement event triggers with `error` which causes an error when codecs are evaluated. I plan to follow up with another PR to resolve that.
Ticket: https://hasurahq.atlassian.net/browse/GDC-585
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7237
GitOrigin-RevId: 8ce40fe6fedcf8b109d6ca50a505333df855a8ce
context: This is foundation work, before we change how the server chooses to compress or not
part of effort: #5518
-----
Prior to this change it was difficult to understand how the functionality in this module related to the semantics of Accept-Encoding. We also didn't correctly handle directives with qvalues.
After this change certain technical infelicities are called out without modifying the behavior of the server; for instance we continue to fall back to identity (no compression) in the case where technically we're supposed to return 406, and we also continue to treat `*` conservatively as meaning “use no compression”.
The only external change here is `gzip;q=x.y` now results in a zipped response.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7213
GitOrigin-RevId: 1910ffd70d29f1ab8825c601f1bd998be70ceeeb
What is the `Cacheable` type class about?
```haskell
class Eq a => Cacheable a where
unchanged :: Accesses -> a -> a -> Bool
default unchanged :: (Generic a, GCacheable (Rep a)) => Accesses -> a -> a -> Bool
unchanged accesses a b = gunchanged (from a) (from b) accesses
```
Its only method is an alternative to `(==)`. The added value of `unchanged` (and the additional `Accesses` argument) arises _only_ for one type, namely `Dependency`. Indeed, the `Cacheable (Dependency a)` instance is non-trivial, whereas every other `Cacheable` instance is completely boilerplate (and indeed either generated from `Generic`, or simply `unchanged _ = (==)`). The `Cacheable (Dependency a)` instance is the only one where the `Accesses` argument is not just passed onwards.
The only callsite of the `unchanged` method is in the `ArrowCache (Rule m)` method. That is to say that the `Cacheable` type class is used to decide when we can re-use parts of the schema cache between Metadata operations.
So what is the `Cacheable (Dependency a)` instance about? Normally, the output of a `Rule m a b` is re-used when the new input (of type `a`) is equal to the old one. But sometimes, that's too coarse: it might be that a certain `Rule m a b` only depends on a small part of its input of type `a`. A `Dependency` allows us to spell out what parts of `a` are being depended on, and these parts are recorded as values of types `Access a` in the state `Accesses`.
If the input `a` changes, but not in a way that touches the recorded `Accesses`, then the output `b` of that rule can be re-used without recomputing.
So now you understand _why_ we're passing `Accesses` to the `unchanged` method: `unchanged` is an equality check in disguise that just needs some additional context.
But we don't need to pass `Accesses` as a function argument. We can use the `reflection` package to pass it as type-level context. So the core of this PR is that we change the instance declaration from
```haskell
instance (Cacheable a) => Cacheable (Dependency a) where
```
to
```haskell
instance (Given Accesses, Eq a) => Eq (Dependency a) where
```
and use `(==)` instead of `unchanged`.
If you haven't seen `reflection` before: it's like a `MonadReader`, but it doesn't require a `Monad`.
In order to pass the current `Accesses` value, instead of simply passing the `Accesses` as a function argument, we need to instantiate the `Given Accesses` context. We use the `give` method from the `reflection` package for that.
```haskell
give :: forall r. Accesses -> (Given Accesses => r) -> r
unchanged :: (Given Accesses => Eq a) => Accesses -> a -> a -> Bool
unchanged accesses a b = give accesses (a == b)
```
With these three components in place, we can delete the `Cacheable` type class entirely.
The remainder of this PR is just to remove the `Cacheable` type class and its instances.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6877
GitOrigin-RevId: 7125f5e11d856e7672ab810a23d5bf5ad176e77f
We currently have a fairly intricate way of running our PostgreSQL and MSSQL integration tests (not the API tests). By splitting them out, we can simplify this a lot. Most prominently, we can rely on Cabal to be our argument parser instead of writing our own.
We can also simplify how they're run in CI. They are currently (weirdly) run alongside the Python integration tests. This breaks them out into their own jobs for better visibility, and to avoid conflating the two.
The changes are as follows:
- The "unit" tests that rely on a running PostgreSQL database are extracted out to a new test directory so they can be run separately.
- Most of the `Main` module comes with them.
- We now refer to these as "integration" tests instead.
- Likewise for the "unit" tests that rely on a running MS SQL Server database. These are a little simpler and we can use `hspec-discover`, with a `SpecHook` to extract the connection string from an environment variable.
- Henceforth, these are the MS SQL Server integration tests.
- New CI jobs have been added for each of these.
- There wasn't actually a job for the MS SQL Server integration tests. It's pretty amazing they still run well.
- The "haskell-tests" CI job, which used to run the PostgreSQL integration tests, has been removed.
- The makefiles and contributing guide have been updated to run these.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6912
GitOrigin-RevId: 67bbe2941bba31793f63d04a9a693779d4463ee1
The main aim of the PR is:
1. To set up a module structure for 'remote-schemas' package.
2. Move parts by the remote schema codebase into the new module structure to validate it.
## Notes to the reviewer
Why a PR with large-ish diff?
1. We've been making progress on the MM project but we don't yet know long it is going to take us to get to the first milestone. To understand this better, we need to figure out the unknowns as soon as possible. Hence I've taken a stab at the first two items in the [end-state](https://gist.github.com/0x777/ca2bdc4284d21c3eec153b51dea255c9) document to figure out the unknowns. Unsurprisingly, there are a bunch of issues that we haven't discussed earlier. These are documented in the 'open questions' section.
1. The diff is large but that is only code moved around and I've added a section that documents how things are moved. In addition, there are fair number of PR comments to help with the review process.
## Changes in the PR
### Module structure
Sets up the module structure as follows:
```
Hasura/
RemoteSchema/
Metadata/
Types.hs
SchemaCache/
Types.hs
Permission.hs
RemoteRelationship.hs
Build.hs
MetadataAPI/
Types.hs
Execute.hs
```
### 1. Types representing metadata are moved
Types that capture metadata information (currently scattered across several RQL modules) are moved into `Hasura.RemoteSchema.Metadata.Types`.
- This new module only depends on very 'core' modules such as
`Hasura.Session` for the notion of roles and `Hasura.Incremental` for `Cacheable` typeclass.
- The requirement on database modules is avoided by generalizing the remote schemas metadata to accept an arbitrary 'r' for a remote relationship
definition.
### 2. SchemaCache related types and build logic have been moved
Types that represent remote schemas information in SchemaCache are moved into `Hasura.RemoteSchema.SchemaCache.Types`.
Similar to `H.RS.Metadata.Types`, this module depends on 'core' modules except for `Hasura.GraphQL.Parser.Variable`. It has something to do with remote relationships but I haven't spent time looking into it. The validation of 'remote relationships to remote schema' is also something that needs to be looked at.
Rips out the logic that builds remote schema's SchemaCache information from the monolithic `buildSchemaCacheRule` and moves it into `Hasura.RemoteSchema.SchemaCache.Build`. Further, the `.SchemaCache.Permission` and `.SchemaCache.RemoteRelationship` have been created from existing modules that capture schema cache building logic for those two components.
This was a fair amount of work. On main, currently remote schema's SchemaCache information is built in two phases - in the first phase, 'permissions' and 'remote relationships' are ignored and in the second phase they are filled in.
While remote relationships can only be resolved after partially resolving sources and other remote schemas, the same isn't true for permissions. Further, most of the work that is done to resolve remote relationships can be moved to the first phase so that the second phase can be a very simple traversal.
This is the approach that was taken - resolve permissions and as much as remote relationships information in the first phase.
### 3. Metadata APIs related types and build logic have been moved
The types that represent remote schema related metadata APIs and the execution logic have been moved to `Hasura.RemoteSchema.MetadataAPI.Types` and `.Execute` modules respectively.
## Open questions:
1. `Hasura.RemoteSchema.Metadata.Types` is so called because I was hoping that all of the metadata related APIs of remote schema can be brought in at `Hasura.RemoteSchema.Metadata.API`. However, as metadata APIs depended on functions from `SchemaCache` module (see [1](ceba6d6226/server/src-lib/Hasura/RQL/DDL/RemoteSchema.hs (L55)) and [2](ceba6d6226/server/src-lib/Hasura/RQL/DDL/RemoteSchema.hs (L91)), it made more sense to create a separate top-level module for `MetadataAPI`s.
Maybe we can just have `Hasura.RemoteSchema.Metadata` and get rid of the extra nesting or have `Hasura.RemoteSchema.Metadata.{Core,Permission,RemoteRelationship}` if we want to break them down further.
1. `buildRemoteSchemas` in `H.RS.SchemaCache.Build` has the following type:
```haskell
buildRemoteSchemas ::
( ArrowChoice arr,
Inc.ArrowDistribute arr,
ArrowWriter (Seq CollectedInfo) arr,
Inc.ArrowCache m arr,
MonadIO m,
HasHttpManagerM m,
Inc.Cacheable remoteRelationshipDefinition,
ToJSON remoteRelationshipDefinition,
MonadError QErr m
) =>
Env.Environment ->
( (Inc.Dependency (HashMap RemoteSchemaName Inc.InvalidationKey), OrderedRoles),
[RemoteSchemaMetadataG remoteRelationshipDefinition]
)
`arr` HashMap RemoteSchemaName (PartiallyResolvedRemoteSchemaCtxG remoteRelationshipDefinition, MetadataObject)
```
Note the dependence on `CollectedInfo` which is defined as
```haskell
data CollectedInfo
= CIInconsistency InconsistentMetadata
| CIDependency
MetadataObject
-- ^ for error reporting on missing dependencies
SchemaObjId
SchemaDependency
deriving (Eq)
```
this pretty much means that remote schemas is dependent on types from databases, actions, ....
How do we fix this? Maybe introduce a typeclass such as `ArrowCollectRemoteSchemaDependencies` which is defined in `Hasura.RemoteSchema` and then implemented in graphql-engine?
1. The dependency on `buildSchemaCacheFor` in `.MetadataAPI.Execute` which has the following signature:
```haskell
buildSchemaCacheFor ::
(QErrM m, CacheRWM m, MetadataM m) =>
MetadataObjId ->
MetadataModifier ->
```
This can be easily resolved if we restrict what the metadata APIs are allowed to do. Currently, they operate in an unfettered access to modify SchemaCache (the `CacheRWM` constraint):
```haskell
runAddRemoteSchema ::
( QErrM m,
CacheRWM m,
MonadIO m,
HasHttpManagerM m,
MetadataM m,
Tracing.MonadTrace m
) =>
Env.Environment ->
AddRemoteSchemaQuery ->
m EncJSON
```
This should instead be changed to restrict remote schema APIs to only modify remote schema metadata (but has access to the remote schemas part of the schema cache), this dependency is completely removed.
```haskell
runAddRemoteSchema ::
( QErrM m,
MonadIO m,
HasHttpManagerM m,
MonadReader RemoteSchemasSchemaCache m,
MonadState RemoteSchemaMetadata m,
Tracing.MonadTrace m
) =>
Env.Environment ->
AddRemoteSchemaQuery ->
m RemoteSchemeMetadataObjId
```
The idea is that the core graphql-engine would call these functions and then call
`buildSchemaCacheFor`.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6291
GitOrigin-RevId: 51357148c6404afe70219afa71bd1d59bdf4ffc6
I am working on https://github.com/hasura/graphql-engine/issues/8807, and wanted to write a Haskell integration test case to reproduce it.
We have Python integration tests somewhat covering this behavior in *test_inconsistent_meta.py*, but no Haskell tests, so I thought I'd shore up the coverage here by adding a few test cases for working behavior.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5897
GitOrigin-RevId: 21500e530e413feaede5cbd8b4a94b07d25a6260
This abstracts `CircularT`'s test cases to work against "any" memoizer, and then runs them against `MemoizeT` as well.
Surprisingly (or not), this works without issue; `MemoizeT` passes all tests with a couple of extra instances.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5780
GitOrigin-RevId: 461880caf9220dc3f52d622a22e8b8bcd594e404