This PR simplifies the types that represent a remote relationship in IR so that they can be reused in other parts (in remote schema types) which could have remote relationships.
The comments on the PR explain the main changes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2979
GitOrigin-RevId: 559c51d9d6ae79e2183ce4347018741b9096ac74
This is effectively a no-op, the `Left err` case can't actually happen.
- removes some unused logic
- refactors the /healthz endpoint to be clearer
- that includes logging the full QErr if checkMetadataHealth fails,
but it actually can't because the existing Postgres implementation
just lifts
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2849
GitOrigin-RevId: ac8abf51b6d869ad4048419e36012137c86e5abd
The only real use was for the dubious multitenant option
--consoleAssetsVersion, which actually overrode not just
the assets version. I.e., as far as I can tell, if you pass
--consoleAssetsVersion to multitenant, that version will
also make it into e.g. HTTP client user agent headers as
the proper graphql-engine version.
I'm dropping that option, since it seems unused in production
and I don't want to go to the effort of fixing it, but am happy
to look into that if folks feels strongly that it should be
kept.
(Reason for attacking this is that I was looking into http
client things around blacklisting, and the versioning thing
is a bit painful around http client headers.)
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2458
GitOrigin-RevId: a02b05557124bdba9f65e96b3aa2746aeee03f4a
>
### Description
>
Insert mutations for MSSQL backend. This PR implements execution logic.
### Changelog
- [x] `CHANGELOG.md` is updated with user-facing content relevant to this PR. If no changelog is required, then add the `no-changelog-required` label.
### Affected components
- [x] Server
- [x] Tests
### Related Issues
->
Close https://github.com/hasura/graphql-engine-mono/issues/2114
### Steps to test and verify
>
Track a MSSQL table and perform the generated insert mutation to test.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2248
Co-authored-by: Abby Sassel <3883855+sassela@users.noreply.github.com>
Co-authored-by: Philip Lykke Carlsen <358550+plcplc@users.noreply.github.com>
GitOrigin-RevId: 936f138c80d7a928180e6e7b0c4da64ecc1f7ebc
This commit applies ormolu to the whole Haskell code base by running `make format`.
For in-flight branches, simply merging changes from `main` will result in merge conflicts.
To avoid this, update your branch using the following instructions. Replace `<format-commit>`
by the hash of *this* commit.
$ git checkout my-feature-branch
$ git merge <format-commit>^ # and resolve conflicts normally
$ make format
$ git commit -a -m "reformat with ormolu"
$ git merge -s ours post-ormolu
https://github.com/hasura/graphql-engine-mono/pull/2404
GitOrigin-RevId: 75049f5c12f430c615eafb4c6b8e83e371e01c8e
>
### Description
>
This PR is an incremental work towards [enabling insert mutations on MSSQL](https://github.com/hasura/graphql-engine-mono/pull/1974). In this PR, we generate insert mutation schema parser for MSSQL backend.
### Changelog
- [ ] `CHANGELOG.md` is updated with user-facing content relevant to this PR. If no changelog is required, then add the `no-changelog-required` label.
### Affected components
- [x] Server
https://github.com/hasura/graphql-engine-mono/pull/2141
GitOrigin-RevId: 8595008dece35f7fded9c52e134de8b97b64f53f
### Description
This PR removes all `fmapX` and `traverseX` functions from RQL.IR, favouring instead `Functor` and `Traversable` instances throughout the code. This was a relatively straightforward change, except for two small pain points: `AnnSelectG` and `AnnInsert`. Both were parametric over two types `a` and `v`, making it impossible to make them traversable functors... But it turns out that in every single use case, `a ~ f v`. By changing those types to take such an `f :: Type -> Type` as an argument instead of `a :: Type` makes it possible to make them functors.
The only small difference is for `AnnIns`, I had to introduce one `Identity` transformation for one of the `f` parameters. This is relatively straightforward.
### Notes
This PR fixes the most verbose BigQuery hint (`let` instead of `<- pure`).
https://github.com/hasura/graphql-engine-mono/pull/1668
GitOrigin-RevId: e632263a8c559aa04aeae10dcaec915b4a81ad1a
### Description
This PR adds the required IR for DB to DB joins, based on @paf31 and @0x777 's `feature/db-to-db` branch.
To do so, it also refactors the IR to introduce a new type parameter, `r`, which is used to recursively constructs the `v` parameter of remote QueryDBs. When collecting remote joins, we replace `r` with `Const Void`, indicating at the type level that there cannot be any leftover remote join.
Furthermore, this PR refactors IR.Select for readability, moves some code from IR.Root to IR.Select to avoid having to deal with circular dependencies, and makes it compile by adding `error` in all new cases in the execution pipeline.
The diff doesn't make it clear, but most of Select.hs is actually unchanged. Declarations have just been reordered by topic, in the following order:
- type declarations
- instance declarations
- type aliases
- constructor functions
- traverse functions
https://github.com/hasura/graphql-engine-mono/pull/1580
Co-authored-by: Phil Freeman <630306+paf31@users.noreply.github.com>
GitOrigin-RevId: bbdcb4119cec8bb3fc32f1294f91b8dea0728721
Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST.
This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible).
The approach now changes to this:
1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed.
1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary.
1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response.
### Known issues
1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR.
1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR.
1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins.
1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST.
1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code.
### Notes to the reviewers
I think it is best reviewed commit by commit.
1. The first one is very straight forward.
1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore
1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor
1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server.
https://github.com/hasura/graphql-engine-mono/pull/1497
GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
fixes#3868
docker image - `hasura/graphql-engine:inherited-roles-preview-48b73a2de`
Note:
To be able to use the inherited roles feature, the graphql-engine should be started with the env variable `HASURA_GRAPHQL_EXPERIMENTAL_FEATURES` set to `inherited_roles`.
Introduction
------------
This PR implements the idea of multiple roles as presented in this [paper](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/FGALanguageICDE07.pdf). The multiple roles feature in this PR can be used via inherited roles. An inherited role is a role which can be created by combining multiple singular roles. For example, if there are two roles `author` and `editor` configured in the graphql-engine, then we can create a inherited role with the name of `combined_author_editor` role which will combine the select permissions of the `author` and `editor` roles and then make GraphQL queries using the `combined_author_editor`.
How are select permissions of different roles are combined?
------------------------------------------------------------
A select permission includes 5 things:
1. Columns accessible to the role
2. Row selection filter
3. Limit
4. Allow aggregation
5. Scalar computed fields accessible to the role
Suppose there are two roles, `role1` gives access to the `address` column with row filter `P1` and `role2` gives access to both the `address` and the `phone` column with row filter `P2` and we create a new role `combined_roles` which combines `role1` and `role2`.
Let's say the following GraphQL query is queried with the `combined_roles` role.
```graphql
query {
employees {
address
phone
}
}
```
This will translate to the following SQL query:
```sql
select
(case when (P1 or P2) then address else null end) as address,
(case when P2 then phone else null end) as phone
from employee
where (P1 or P2)
```
The other parameters of the select permission will be combined in the following manner:
1. Limit - Minimum of the limits will be the limit of the inherited role
2. Allow aggregations - If any of the role allows aggregation, then the inherited role will allow aggregation
3. Scalar computed fields - same as table column fields, as in the above example
APIs for inherited roles:
----------------------
1. `add_inherited_role`
`add_inherited_role` is the [metadata API](https://hasura.io/docs/1.0/graphql/core/api-reference/index.html#schema-metadata-api) to create a new inherited role. It accepts two arguments
`role_name`: the name of the inherited role to be added (String)
`role_set`: list of roles that need to be combined (Array of Strings)
Example:
```json
{
"type": "add_inherited_role",
"args": {
"role_name":"combined_user",
"role_set":[
"user",
"user1"
]
}
}
```
After adding the inherited role, the inherited role can be used like single roles like earlier
Note:
An inherited role can only be created with non-inherited/singular roles.
2. `drop_inherited_role`
The `drop_inherited_role` API accepts the name of the inherited role and drops it from the metadata. It accepts a single argument:
`role_name`: name of the inherited role to be dropped
Example:
```json
{
"type": "drop_inherited_role",
"args": {
"role_name":"combined_user"
}
}
```
Metadata
---------
The derived roles metadata will be included under the `experimental_features` key while exporting the metadata.
```json
{
"experimental_features": {
"derived_roles": [
{
"role_name": "manager_is_employee_too",
"role_set": [
"employee",
"manager"
]
}
]
}
}
```
Scope
------
Only postgres queries and subscriptions are supported in this PR.
Important points:
-----------------
1. All columns exposed to an inherited role will be marked as `nullable`, this is done so that cell value nullification can be done.
TODOs
-------
- [ ] Tests
- [ ] Test a GraphQL query running with a inherited role without enabling inherited roles in experimental features
- [] Tests for aggregate queries, limit, computed fields, functions, subscriptions (?)
- [ ] Introspection test with a inherited role (nullability changes in a inherited role)
- [ ] Docs
- [ ] Changelog
Co-authored-by: Vamshi Surabhi <6562944+0x777@users.noreply.github.com>
GitOrigin-RevId: 3b8ee1e11f5ceca80fe294f8c074d42fbccfec63
Added a note on existentials. I plan to create a subsequent PR with a note on how we use the singletons trick to recover the type inside an existential.
GitOrigin-RevId: 1f227d859dcc384b4ac7e103053f643f879827d1
This is an incremental PR towards https://github.com/hasura/graphql-engine/pull/5797
Co-authored-by: Anon Ray <ecthiender@users.noreply.github.com>
GitOrigin-RevId: a6cb8c239b2ff840a0095e78845f682af0e588a9
Generalize TableCoreInfoRM, TableCoreCacheRT, some table metadata data types, generalize fromPGCol to fromCol, generalize some schema cache functions, prepare some enum schema cache code for generalization
GitOrigin-RevId: a65112bc1688e00fd707d27af087cb2585961da2