mirror of
https://github.com/hasura/graphql-engine.git
synced 2024-12-24 16:03:37 +03:00
5677446ff3
5 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Antoine Leblanc
|
306162f477 |
Remove ServerConfigCtx .
### Description This PR removes `ServerConfigCtx` and `HasServerConfigCtx`. Instead, it favours different approaches: - when the code was only using one field, it passes that field explicitly (usually `SQLGenCtx` or `CheckFeatureFlag`) - when the code was using several fields, but in only one function, it inlines - for the cache build, it introduces `CacheStaticConfig` and `CacheDynamicConfig`, which are subsets of `AppEnv` and `AppContext` respectively The main goal of this is to help with the modularization of the engine: as `ServerConfigCtx` had fields whose types were imported from several unrelated parts of the engine, using it tied together parts of the engine that should not be aware of one another (such as tying together `Hasura.LogicalModel` and `Hasura.GraphQL.Schema`). The bulk of this PR is a change to the cache build, as a follow up to #8509: instead of giving the entire `ServerConfigCtx` as a incremental rule argument, we only give the new `CacheDynamicConfig` struct, which has fewer fields. The other required fields, that were coming from the `AppEnv`, are now given via the `HasCacheStaticConfig` constraint, which is a "subset" of `HasAppEnv`. (Some further work could include moving `StringifyNumbers` out of `GraphQL.Schema.Options`, given how it is used all across the codebase, including in `RQL.DML`.) PR-URL: https://github.com/hasura/graphql-engine-mono/pull/8513 GitOrigin-RevId: 818cbcd71494e3cd946b06adbb02ca328a8a298e |
||
Auke Booij
|
29f0660dee |
chore(server): remove some unused function arguments
These didn't trigger GHC warnings because their name starts with an underscore. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7954 GitOrigin-RevId: 6898b165f073e70aad06e1a2aa5f703ac385f9ed |
||
Antoine Leblanc
|
6e574f1bbe |
harmonize network manager handling
## Description ### I want to speak to the `Manager` Oh boy. This PR is both fairly straightforward and overreaching, so let's break it down. For most network access, we need a [`HTTP.Manager`](https://hackage.haskell.org/package/http-client-0.1.0.0/docs/Network-HTTP-Client-Manager.html). It is created only once, at the top level, when starting the engine, and is then threaded through the application to wherever we need to make a network call. As of main, the way we do this is not standardized: most of the GraphQL execution code passes it "manually" as a function argument throughout the code. We also have a custom monad constraint, `HasHttpManagerM`, that describes a monad's ability to provide a manager. And, finally, several parts of the code store the manager in some kind of argument structure, such as `RunT`'s `RunCtx`. This PR's first goal is to harmonize all of this: we always create the manager at the root, and we already have it when we do our very first `runReaderT`. Wouldn't it make sense for the rest of the code to not manually pass it anywhere, to not store it anywhere, but to always rely on the current monad providing it? This is, in short, what this PR does: it implements a constraint on the base monads, so that they provide the manager, and removes most explicit passing from the code. ### First come, first served One way this PR goes a tiny bit further than "just" doing the aforementioned harmonization is that it starts the process of implementing the "Services oriented architecture" roughly outlined in this [draft document](https://docs.google.com/document/d/1FAigqrST0juU1WcT4HIxJxe1iEBwTuBZodTaeUvsKqQ/edit?usp=sharing). Instead of using the existing `HasHTTPManagerM`, this PR revamps it into the `ProvidesNetwork` service. The idea is, again, that we should make all "external" dependencies of the engine, all things that the core of the engine doesn't care about, a "service". This allows us to define clear APIs for features, to choose different implementations based on which version of the engine we're running, harmonizes our many scattered monadic constraints... Which is why this service is called "Network": we can refine it, moving forward, to be the constraint that defines how all network communication is to operate, instead of relying on disparate classes constraint or hardcoded decisions. A comment in the code clarifies this intent. ### Side-effects? In my Haskell? This PR also unavoidably touches some other aspects of the codebase. One such example: it introduces `Hasura.App.AppContext`, named after `HasuraPro.Context.AppContext`: a name for the reader structure at the base level. It also transforms `Handler` from a type alias to a newtype, as `Handler` is where we actually enforce HTTP limits; but without `Handler` being a distinct type, any code path could simply do a `runExceptT $ runReader` and forget to enforce them. (As a rule of thumb, i am starting to consider any straggling `runReaderT` or `runExceptT` as a code smell: we should not stack / unstack monads haphazardly, and every layer should be an opaque `newtype` with a corresponding run function.) ## Further work In several places, i have left TODOs when i have encountered things that suggest that we should do further unrelated cleanups. I'll write down the follow-up steps, either in the aforementioned document or on slack. But, in short, at a glance, in approximate order, we could: - delete `ExecutionCtx` as it is only a subset of `ServerCtx`, and remove one more `runReaderT` call - delete `ServerConfigCtx` as it is only a subset of `ServerCtx`, and remove it from `RunCtx` - remove `ServerCtx` from `HandlerCtx`, and make it part of `AppContext`, or even make it the `AppContext` altogether (since, at least for the OSS version, `AppContext` is there again only a subset) - remove `CacheBuildParams` and `CacheBuild` altogether, as they're just a distinct stack that is a `ReaderT` on top of `IO` that contains, you guessed it, the same thing as `ServerCtx` - move `RunT` out of `RQL.Types` and rename it, since after the previous cleanups **it only contains `UserInfo`**; it could be bundled with the authentication service, made a small implementation detail in `Hasura.Server.Auth` - rename `PGMetadaStorageT` to something a bit more accurate, such as `App`, and enforce its IO base This would significantly simply our complex stack. From there, or in parallel, we can start moving existing dependencies as Services. For the purpose of supporting read replicas entitlement, we could move `MonadResolveSource` to a `SourceResolver` service, as attempted in #7653, and transform `UserAuthenticationM` into a `Authentication` service. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7736 GitOrigin-RevId: 68cce710eb9e7d752bda1ba0c49541d24df8209f |
||
Auke Booij
|
cdac24c79f |
server: delete the Cacheable type class in favor of Eq
What is the `Cacheable` type class about? ```haskell class Eq a => Cacheable a where unchanged :: Accesses -> a -> a -> Bool default unchanged :: (Generic a, GCacheable (Rep a)) => Accesses -> a -> a -> Bool unchanged accesses a b = gunchanged (from a) (from b) accesses ``` Its only method is an alternative to `(==)`. The added value of `unchanged` (and the additional `Accesses` argument) arises _only_ for one type, namely `Dependency`. Indeed, the `Cacheable (Dependency a)` instance is non-trivial, whereas every other `Cacheable` instance is completely boilerplate (and indeed either generated from `Generic`, or simply `unchanged _ = (==)`). The `Cacheable (Dependency a)` instance is the only one where the `Accesses` argument is not just passed onwards. The only callsite of the `unchanged` method is in the `ArrowCache (Rule m)` method. That is to say that the `Cacheable` type class is used to decide when we can re-use parts of the schema cache between Metadata operations. So what is the `Cacheable (Dependency a)` instance about? Normally, the output of a `Rule m a b` is re-used when the new input (of type `a`) is equal to the old one. But sometimes, that's too coarse: it might be that a certain `Rule m a b` only depends on a small part of its input of type `a`. A `Dependency` allows us to spell out what parts of `a` are being depended on, and these parts are recorded as values of types `Access a` in the state `Accesses`. If the input `a` changes, but not in a way that touches the recorded `Accesses`, then the output `b` of that rule can be re-used without recomputing. So now you understand _why_ we're passing `Accesses` to the `unchanged` method: `unchanged` is an equality check in disguise that just needs some additional context. But we don't need to pass `Accesses` as a function argument. We can use the `reflection` package to pass it as type-level context. So the core of this PR is that we change the instance declaration from ```haskell instance (Cacheable a) => Cacheable (Dependency a) where ``` to ```haskell instance (Given Accesses, Eq a) => Eq (Dependency a) where ``` and use `(==)` instead of `unchanged`. If you haven't seen `reflection` before: it's like a `MonadReader`, but it doesn't require a `Monad`. In order to pass the current `Accesses` value, instead of simply passing the `Accesses` as a function argument, we need to instantiate the `Given Accesses` context. We use the `give` method from the `reflection` package for that. ```haskell give :: forall r. Accesses -> (Given Accesses => r) -> r unchanged :: (Given Accesses => Eq a) => Accesses -> a -> a -> Bool unchanged accesses a b = give accesses (a == b) ``` With these three components in place, we can delete the `Cacheable` type class entirely. The remainder of this PR is just to remove the `Cacheable` type class and its instances. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6877 GitOrigin-RevId: 7125f5e11d856e7672ab810a23d5bf5ad176e77f |
||
Vamshi Surabhi
|
a01d1188f2 |
scaffolding for remote-schemas module
The main aim of the PR is: 1. To set up a module structure for 'remote-schemas' package. 2. Move parts by the remote schema codebase into the new module structure to validate it. ## Notes to the reviewer Why a PR with large-ish diff? 1. We've been making progress on the MM project but we don't yet know long it is going to take us to get to the first milestone. To understand this better, we need to figure out the unknowns as soon as possible. Hence I've taken a stab at the first two items in the [end-state](https://gist.github.com/0x777/ca2bdc4284d21c3eec153b51dea255c9) document to figure out the unknowns. Unsurprisingly, there are a bunch of issues that we haven't discussed earlier. These are documented in the 'open questions' section. 1. The diff is large but that is only code moved around and I've added a section that documents how things are moved. In addition, there are fair number of PR comments to help with the review process. ## Changes in the PR ### Module structure Sets up the module structure as follows: ``` Hasura/ RemoteSchema/ Metadata/ Types.hs SchemaCache/ Types.hs Permission.hs RemoteRelationship.hs Build.hs MetadataAPI/ Types.hs Execute.hs ``` ### 1. Types representing metadata are moved Types that capture metadata information (currently scattered across several RQL modules) are moved into `Hasura.RemoteSchema.Metadata.Types`. - This new module only depends on very 'core' modules such as `Hasura.Session` for the notion of roles and `Hasura.Incremental` for `Cacheable` typeclass. - The requirement on database modules is avoided by generalizing the remote schemas metadata to accept an arbitrary 'r' for a remote relationship definition. ### 2. SchemaCache related types and build logic have been moved Types that represent remote schemas information in SchemaCache are moved into `Hasura.RemoteSchema.SchemaCache.Types`. Similar to `H.RS.Metadata.Types`, this module depends on 'core' modules except for `Hasura.GraphQL.Parser.Variable`. It has something to do with remote relationships but I haven't spent time looking into it. The validation of 'remote relationships to remote schema' is also something that needs to be looked at. Rips out the logic that builds remote schema's SchemaCache information from the monolithic `buildSchemaCacheRule` and moves it into `Hasura.RemoteSchema.SchemaCache.Build`. Further, the `.SchemaCache.Permission` and `.SchemaCache.RemoteRelationship` have been created from existing modules that capture schema cache building logic for those two components. This was a fair amount of work. On main, currently remote schema's SchemaCache information is built in two phases - in the first phase, 'permissions' and 'remote relationships' are ignored and in the second phase they are filled in. While remote relationships can only be resolved after partially resolving sources and other remote schemas, the same isn't true for permissions. Further, most of the work that is done to resolve remote relationships can be moved to the first phase so that the second phase can be a very simple traversal. This is the approach that was taken - resolve permissions and as much as remote relationships information in the first phase. ### 3. Metadata APIs related types and build logic have been moved The types that represent remote schema related metadata APIs and the execution logic have been moved to `Hasura.RemoteSchema.MetadataAPI.Types` and `.Execute` modules respectively. ## Open questions: 1. `Hasura.RemoteSchema.Metadata.Types` is so called because I was hoping that all of the metadata related APIs of remote schema can be brought in at `Hasura.RemoteSchema.Metadata.API`. However, as metadata APIs depended on functions from `SchemaCache` module (see [1]( |