Followup to hasura/graphql-engine-mono#4713.
The `memoizeOn` method, part of `MonadSchema`, originally had the following type:
```haskell
memoizeOn
:: (HasCallStack, Ord a, Typeable a, Typeable b, Typeable k)
=> TH.Name
-> a
-> m (Parser k n b)
-> m (Parser k n b)
```
The reason for operating on `Parser`s specifically was that the `MonadSchema` effect would additionally initialize certain `Unique` values, which appear (nested in) the type of `Parser`.
hasura/graphql-engine-mono#518 changed the type of `memoizeOn`, to additionally allow memoizing `FieldParser`s. These also contained a `Unique` value, which was similarly initialized by the `MonadSchema` effect. The new type of `memoizeOn` was as follows:
```haskell
memoizeOn
:: forall p d a b
. (HasCallStack, HasDefinition (p n b) d, Ord a, Typeable p, Typeable a, Typeable b)
=> TH.Name
-> a
-> m (p n b)
-> m (p n b)
```
Note the type `p n b` of the value being memoized: by choosing `p` to be either `Parser k` or `FieldParser`, both can be memoized. Also note the new `HasDefinition (p n b) d` constraint, which provided a `Lens` for accessing the `Unique` value to be initialized.
A quick simplification is that the `HasCallStack` constraint has never been used by any code. This was realized in hasura/graphql-engine-mono#4713, by removing that constraint.
hasura/graphql-engine-mono#2980 removed the `Unique` value from our GraphQL-related types entirely, as their original purpose was never truly realized. One part of removing `Unique` consisted of dropping the `HasDefinition (p n b) d` constraint from `memoizeOn`.
What I didn't realize at the time was that this meant that the type of `memoizeOn` could be generalized and simplified much further. This PR finally implements that generalization. The new type is as follows:
```haskell
memoizeOn ::
forall a p.
(Ord a, Typeable a, Typeable p) =>
TH.Name ->
a ->
m p ->
m p
```
This change has a couple of consequences.
1. While constructing the schema, we often output `Maybe (Parser ...)`, to model that the existence of certain pieces of GraphQL schema sometimes depends on the permissions that a certain role has. The previous versions of `memoizeOn` were not able to handle this, as the only thing they could memoize was fully-defined (if not yet fully-evaluated) `(Field)Parser`s. This much more general API _would_ allow memoizing `Maybe (Parser ...)`s. However, we probably have to be continue being cautious with this: if we blindly memoize all `Maybe (Parser ...)`s, the resulting code may never be able to decide whether the value is `Just` or `Nothing` - i.e. it never commits to the existence-or-not of a GraphQL schema fragment. This would manifest as a non-well-founded knot tying, and this would get reported as an error by the implementation of `memoizeOn`.
tl;dr: This generalization _technically_ allows for memoizing `Maybe` values, but we probably still want to avoid doing so.
For this reason, the PR adds a specialized version of `memoizeOn` to `Hasura.GraphQL.Schema.Parser`.
2. There is no longer any need to connect the `MonadSchema` knot-tying effect with the `MonadParse` effect. In fact, after this PR, the `memoizeOn` method is completely GraphQL-agnostic, and so we implement hasura/graphql-engine-mono#4726, separating `memoizeOn` from `MonadParse` entirely - `memoizeOn` can be defined and implemented as a general Haskell typeclass method.
Since `MonadSchema` has been made into a single-type-parameter type class, it has been renamed to something more general, namely `MonadMemoize`. Its only task is to memoize arbitrary `Typeable p` objects under a combined key consisting of a `TH.Name` and a `Typeable a`.
Also for this reason, the new `MonadMemoize` has been moved to the more general `Control.Monad.Memoize`.
3. After this change, it's somewhat clearer what `memoizeOn` does: it memoizes an arbitrary value of a `Typeable` type. The only thing that needs to be understood in its implementation is how the manual blackholing works. There is no more semantic interaction with _any_ GraphQL code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4725
Co-authored-by: Daniel Harvey <4729125+danieljharvey@users.noreply.github.com>
GitOrigin-RevId: 089fa2e82c2ce29da76850e994eabb1e261f9c92
### Description
I am not 100% sure about this PR; while I think the code is better this way, I'm willing to be convinced otherwise.
In short, this PR moves the `RoleName` field into the `SchemaContext`, instead of being a nebulous `Has RoleName` constraint on the reader monad. The major upside of this is that it makes it an explicit named field, rather than something that must be given as part of a tuple of arguments when calling `runReader`.
However, the downside is that it breaks the helper permissions functions of `Schema.Table`, which relied on `Has RoleName r`. This PR makes the choice of passing the role name explicitly to all of those functions, which in turn means first explicitly fetching the role name in a lot of places. It makes it more explicit when a schema building block relies on the role name, but is a bit verbose...
### Alternatives
Some alternatives worth considering:
- attempting something like `Has context r, Has RoleName context`, which would allow them to be independent from the context but still fetch the role name from the reader, but might require type annotations to not be ambiguous
- keeping the permission functions the same, with `Has RoleName r`, and introducing a bunch of newtypes instead of using tuples to explicitly implement all the required `Has` instances
- changing the permission functions to `Has SchemaContext r`, since they are functions used only to build the schema, and therefore may be allowed to be tied to the context.
What do y'all think?
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5073
GitOrigin-RevId: 8fd09fafb54905a4d115ef30842d35da0c3db5d2
### Description
A trivial PR, extracted out of #4936, that removes remote schema permissions from the schema context, as they are only ever used at the top level: whether or not we need to use remote schema permissions is not something that impacts _how_ we build the schema, but whether some parts of the schema should be built at all, and therefore doesn't need to be accessible throughout the build process.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5050
GitOrigin-RevId: 734673370393d5640ad753222982baf2698f6d8f
This moves `MkTypename` and `NamingCase` into their own modules, with the intent of reducing the scope of the schema parsers code, and trying to reduce imports of large modules when small ones will do.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4978
GitOrigin-RevId: 19541257fe010035390f6183a4eaa37bae0d3ca1
The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do.
The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers.
This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`.
However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase.
The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770
Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com>
GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
Pretty much all quasi-quoted names in the server code base have ended up in `Hasura.GraphQL.Parser.Constants`. I'm now finding this unpleasant for two reasons:
1. I would like to factor out the parser code into its own Cabal package, and I don't want to have to expose all these names.
2. Most of them really have nothing to do with the parsers.
In order to remedy this, I have:
1. moved the names used by parser code to `Hasura.GraphQL.Parser.DirectiveName`, as they're all related to directives;
2. moved `Hasura.GraphQL.Parser.Constants` to `Hasura.Name`, changing the qualified import name from `G` to `Name`;
3. moved names only used in tests to the appropriate test case;
4. removed unused items from `Hasura.Name`; and
5. grouped related names.
Most of the changes are simply changing `G` to `Name`, which I find much more meaningful.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4777
GitOrigin-RevId: a77aa0aee137b2b5e6faec94495d3a9fbfa1348b
## Motivation
This PR rewrites most of Relay to achieve the following:
- ~~fix a bug in which the same node id could refer to two different tables in the schema~~
- remove one of the few remaining uses of the source cache in the schema building code
In doing so, it also:
- simplifies the `BackendSchema` class by removing `node` from it,
- makes it much easier for other backends to support Relay,
- documents, re-organizes, and clarifies the code.
## Description
This PR introduces a new `NodeId` version ~~, and adapts the Postgres code to always generate this V2 version~~. This new id contains the source name, in addition to the table name, in order to disambiguate similar table names across different sources (which is now possible with source customization). In doing so, it now explicitly handles that case for V1 node ids, and returns an explicit error message instead of running the risk of _silently returning the wrong information_.
Furthermore, it adapts `nodeField` to support multiple backends; most of the code was trivial to generalize, and as a result it lowers the cost of entry for other backends, that now only need to support `AFNodeId` in their translation layer.
Finally, it removes one more cycle in the schema building code, by using the same trick we used for remote relationships instead of using the memoization trick of #4576.
## Remaining work
- ~~[ ]write a Changelog entry~~
- ~~[x] adapt all tests that were asserting on an old node id~~
## Future work
This PR was adapted from its original form to avoid a breaking change: while it introduces a Node ID V2, we keep generating V1 IDs and the parser rejects V2 IDs. It will be easy to make the switch at a later data in a subsequent PR.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4593
GitOrigin-RevId: 88e5cb91e8b0646900547fa8c7c0e1463de267a1
This is a first step towards clarifying the role of `UnpreparedValue` as part of the IR. It certainly does not belong in the parser framework.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4588
GitOrigin-RevId: d1582a0b266729b79e00d31057178a4099168e6d
### Description
The main goal of this PR is, as stated, to remove the circular dependency in the schema building code. This cycle arises from the existence of remote relationships: when we build the schema for a source A, a remote relationship might force us to jump to the schema of a source B, or some remote schema. As a result, we end up having to do a dispatch from a "leaf" of the schema, similar to the one done at the root. In turn, this forces us to carry along in the schema a lot of information required for that dispatch, AND it forces us to import the instances in scope, creating an import loop.
As discussed in #4489, this PR implements the "dependency injection" solution: we pass to the schema a function to call to do the dispatch, and to get a generated field for a remote relationship. That way, this function can be chosen at the root level, and the leaves need not be aware of the overall context.
This PR grew a bit bigger than that, however; in an attempt to try and remove the `SourceCache` from the schema altogether, it changed a lot of functions across the schema building code, to thread along the `SourceInfo b` of the source being built. This avoids having to do cache lookups within a given source. A few cases remain, such as relay, that we might try to tackle in a subsequent PR.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4557
GitOrigin-RevId: 9388e48372877520a72a9fd1677005df9f7b2d72
## Description
This small PR moves all functions in `RQL.Types.hs` to better locations. Most `askX` functions are moved alongside the `unsafe` functions they use. Several other functions are moved closer to their call site. `MetadataM` is moved alongside `Metadata`. This PR also documents the `ask` functions.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4355
GitOrigin-RevId: 0498a7e8f98e7a94af911dd375cad84ace7ddffa
### Description
This PR extends the `RemoteSchema` parsers to also include remote relationships. This include a significant refactoring of the top level schema building blocks, since remote schemas can no longer be built in isolation: they have to be built within the same run of `MonadSchema` as the sources. It is originally taken from the changes in #3069 and was slightly adapted.
I highly recommend turning OFF whitespace in the Github UI for `Schema.hs`, since I've adjusted the indentation of two large functions.
### Warning
Given the lack of a feature flag, this PR technically **enables the feature**. While the metadata API is not plugged in, a savvy user could use `replace_metadata` to set a metadata that contains remote joins from remote schemas, and they would be enabled. Is this acceptable?
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3811
GitOrigin-RevId: a5b00f865cdb8890b0fc02b139c2ebd48929f138
### Description
This PR moves Hasura-specific schema functions from `Hasura.GraphQL.Parser.Class` into `Hasura.GraphQL.Schema.Common`. It also removes the two corresponding monad aliases, and consequently harmonizes several parts of the code to use the same common constraint.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3947
GitOrigin-RevId: 40985a7d86da97a311bd480f9a57cc18c350c2a8
### Description
This PR adds the ability to perform remote joins from remote schemas in the engine. To do so, we alter the definition of an `ExecutionStep` targeting a remote schema: the `ExecStepRemote` constructor now expects a `Maybe RemoteJoins`. This new argument is used when processing the execution step, in the transport layer (either `Transport.HTTP` or `Transport.WebSocket`).
For this `Maybe RemoteJoins` to be extracted from a parsed query, this PR also extends the `Execute.RemoteJoin.Collect` module, to implement "collection" from a selection set. Not only do those new functions extract the remote joins, but they also apply all necessary transformations to the selection sets (such as inserting the necessary "phantom" fields used as join keys).
Finally in `Execute.RemoteJoin.Join`, we make two changes. First, we now always look for nested remote joins, regardless of whether the join we just performed went to a source or a remote schema; and second we adapt our join tree logic according to the special cases that were added to deal with remote server edge cases.
Additionally, this PR refactors / cleans / documents `Execute.RemoteJoin.RemoteServer`. This is not required as part of this change and could be moved to a separate PR if needed (a similar cleanup of `Join` is done independently in #3894). It also introduces a draft of a new documentation page for this project, that will be refined in the release PR that ships the feature (either #3069 or a copy of it).
While this PR extends the engine, it doesn't plug such relationships in the schema, meaning that, as of this PR, the new code paths in `Join` are technically unreachable. Adding the corresponding schema code and, ultimately, enabling the metadata API will be done in subsequent PRs.
### Keeping track of concrete type names
The main change this PR makes to the existing `Join` code is to handle a new reserved field we sometimes use when targeting remote servers: the `__hasura_internal_typename` field. In short, a GraphQL selection set can sometimes "branch" based on the concrete "runtime type" of the object on which the selection happens:
```graphql
query {
author(id: 53478) {
... on Writer {
name
articles {
title
}
}
... on Artist {
name
articles {
title
}
}
}
}
```
If both of those `articles` are remote joins, we need to be able, when we get the answer, to differentiate between the two different cases. We do this by asking for `__typename`, to be able to decide if we're in the `Writer` or the `Artist` branch of the query.
To avoid further processing / customization of results, we only insert this `__hasura_internal_typename: __typename` field in the query in the case of unions of interfaces AND if we have the guarantee that we will processing the request as part of the remote joins "folding": that is, if there's any remote join in this branch in the tree. Otherwise, we don't insert the field, and we leave that part of the response untouched.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3810
GitOrigin-RevId: 89aaf16274d68e26ad3730b80c2d2fdc2896b96c
In hasura/graphql-engine#5144, we noticed that having remote relationships in the schema is problematic for Relay. In particular, we don't support remote schemas in Relay at all, and because of this, remote relationships were also broken.
The fix was easy: when we're building the schema for Relay, whenever we encounter a remote relationship in our configuration, we simply skip building that field. The implementation was easy: (see hasura/graphql-engine#5145)
```diff
- SFRemoteRelationship info -> pure $ mkRemoteRelationshipFld info
+ SFRemoteRelationship info ->
+ -- https://github.com/hasura/graphql-engine/issues/5144
+ if isRelay then [] else pure $ mkRemoteRelationshipFld info
```
A test case was added in that PR to prevent us from accidentally re-including remote relationships in the Relay schema. (However, it now looks like that test case does not function correctly.)
The above code was later refactored in #3037, making use of the `MaybeT` effect. However, this effect was not used correctly, so that the result of the check was ignored.
This fixes the code to use the `MaybeT` effect correctly.
CC @0x777 @rakeshkky
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3868
GitOrigin-RevId: e528303e01eacf60173cba1eec1898986cf12359
### Description
This PR is one further step towards remote joins from remote schemas. It introduces a custom partial AST to represent queries to remote schemas in the IR: we now need to augment what used to be a straightforward GraphQL AST with additional information for remote join fields.
This PR does the minimal amount of work to adjust the rest of the code accordingly, using `Void` in all places that expect a type representing remote relationships.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3794
GitOrigin-RevId: 33fc317731aace71f82ad158a1951ea93350d6cc
We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema.
Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects.
We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e46 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type:
```haskell
tableSelectionSet ::
forall b r m n.
MonadBuildSchema b r m n =>
SourceName ->
TableInfo b ->
SelPermInfo b ->
m (Parser 'Output n (AnnotatedFields b))
```
There are three reasons to change this.
1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125.
2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read.
3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068.
Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter.
One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role.
So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608
GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
This PR pretty much does the same thing to remote relationship types in schemacache as what #2979 did to remote relationship types in the IR. On main remote relationships are represented by types of form `T from to`. This PR changes it to `T from` which makes it a lot more reusable.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3037
GitOrigin-RevId: 90a5c9e2346c8dc2da6ec5b8c970d6c863d2afb8