### Description
This PR adds the ability to perform remote joins from remote schemas in the engine. To do so, we alter the definition of an `ExecutionStep` targeting a remote schema: the `ExecStepRemote` constructor now expects a `Maybe RemoteJoins`. This new argument is used when processing the execution step, in the transport layer (either `Transport.HTTP` or `Transport.WebSocket`).
For this `Maybe RemoteJoins` to be extracted from a parsed query, this PR also extends the `Execute.RemoteJoin.Collect` module, to implement "collection" from a selection set. Not only do those new functions extract the remote joins, but they also apply all necessary transformations to the selection sets (such as inserting the necessary "phantom" fields used as join keys).
Finally in `Execute.RemoteJoin.Join`, we make two changes. First, we now always look for nested remote joins, regardless of whether the join we just performed went to a source or a remote schema; and second we adapt our join tree logic according to the special cases that were added to deal with remote server edge cases.
Additionally, this PR refactors / cleans / documents `Execute.RemoteJoin.RemoteServer`. This is not required as part of this change and could be moved to a separate PR if needed (a similar cleanup of `Join` is done independently in #3894). It also introduces a draft of a new documentation page for this project, that will be refined in the release PR that ships the feature (either #3069 or a copy of it).
While this PR extends the engine, it doesn't plug such relationships in the schema, meaning that, as of this PR, the new code paths in `Join` are technically unreachable. Adding the corresponding schema code and, ultimately, enabling the metadata API will be done in subsequent PRs.
### Keeping track of concrete type names
The main change this PR makes to the existing `Join` code is to handle a new reserved field we sometimes use when targeting remote servers: the `__hasura_internal_typename` field. In short, a GraphQL selection set can sometimes "branch" based on the concrete "runtime type" of the object on which the selection happens:
```graphql
query {
author(id: 53478) {
... on Writer {
name
articles {
title
}
}
... on Artist {
name
articles {
title
}
}
}
}
```
If both of those `articles` are remote joins, we need to be able, when we get the answer, to differentiate between the two different cases. We do this by asking for `__typename`, to be able to decide if we're in the `Writer` or the `Artist` branch of the query.
To avoid further processing / customization of results, we only insert this `__hasura_internal_typename: __typename` field in the query in the case of unions of interfaces AND if we have the guarantee that we will processing the request as part of the remote joins "folding": that is, if there's any remote join in this branch in the tree. Otherwise, we don't insert the field, and we leave that part of the response untouched.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3810
GitOrigin-RevId: 89aaf16274d68e26ad3730b80c2d2fdc2896b96c
### Description
Several libraries define `catMaybes` as `mapMaybe id`. We had it defined in `Data.HashMap.Strict.Extended` already. This small PR also defines it in `Extended` modules for other containers and replaces every occurrence of `mapMaybe id` accordingly.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3884
GitOrigin-RevId: d222a2ca2f4eb9b725b20450a62a626d3886dbf4
In hasura/graphql-engine#5144, we noticed that having remote relationships in the schema is problematic for Relay. In particular, we don't support remote schemas in Relay at all, and because of this, remote relationships were also broken.
The fix was easy: when we're building the schema for Relay, whenever we encounter a remote relationship in our configuration, we simply skip building that field. The implementation was easy: (see hasura/graphql-engine#5145)
```diff
- SFRemoteRelationship info -> pure $ mkRemoteRelationshipFld info
+ SFRemoteRelationship info ->
+ -- https://github.com/hasura/graphql-engine/issues/5144
+ if isRelay then [] else pure $ mkRemoteRelationshipFld info
```
A test case was added in that PR to prevent us from accidentally re-including remote relationships in the Relay schema. (However, it now looks like that test case does not function correctly.)
The above code was later refactored in #3037, making use of the `MaybeT` effect. However, this effect was not used correctly, so that the result of the check was ignored.
This fixes the code to use the `MaybeT` effect correctly.
CC @0x777 @rakeshkky
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3868
GitOrigin-RevId: e528303e01eacf60173cba1eec1898986cf12359
### Description
This PR is one further step towards remote joins from remote schemas. It introduces a custom partial AST to represent queries to remote schemas in the IR: we now need to augment what used to be a straightforward GraphQL AST with additional information for remote join fields.
This PR does the minimal amount of work to adjust the rest of the code accordingly, using `Void` in all places that expect a type representing remote relationships.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3794
GitOrigin-RevId: 33fc317731aace71f82ad158a1951ea93350d6cc
No logic in this PR, just tidying things up (renaming the backend from `Experimental` to `DataWrapper`).
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3779
GitOrigin-RevId: f11acf563ccd8b9f16bc23c5e92da392aa4cfb2c
Numbers from CI for the new (currently noisy) `replace_metadata` adhoc benchmark:
chinook: 0.19s -> 0.16
huge_schema: 36.98s -> 29.89
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3685
GitOrigin-RevId: be79b666858b03e8407c0d89765e9aac0af8d40a
I discovered and removed instances of Boolean Blindness about whether json numbers should be stringified or not.
Although quite far-reaching, this is a completely mechanical change and should have no observable impact outside the server code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3763
GitOrigin-RevId: c588891afd8a6923a135c736f6581a43a2eddbc7
In order to respond to GraphQL queries that make use of the introspection fields `__type` or `__schema`, we need two things:
- an overview of the relevant GraphQL type information, stored in a `Schema` object, and
- to have included the `__type` and `__schema` fields in the `query_root` that we generate.
It used to be necessary to do the above items in that order, since the `__type` and `__schema` fields (i.e. the respective `FieldParser`s) were generated _from_ a `Schema` object.
Thanks to recent refactorings in `Hasura.GraphQL.Schema.Introspect` (see hasura/graphql-engine-mono#2835 or hasura/graphql-engine@5760d9289c), the introspection fields _themselves_ are now `Schema`-agnostic, and simply return a function that takes a `Schema` object after parsing. For instance, the type of `schema`, corresponding to the `__schema` field, has literally changed as follows:
```diff
-schema :: MonadParse n => Schema -> FieldParser n ( J.Value)
+schema :: MonadParse n => FieldParser n (Schema -> J.Value)
```
This means that the introspection fields can be included in the GraphQL schema *before* we have generated a `Schema` object. In particular, rather than the current architecture of generating `Schema` at startup time for every role, we can instead generate `Schema` ad-hoc at query parsing time, only for those queries that make use of the introspection fields. This avoids us storing a `Schema` for every role for the lifetime of the server.
However: this introduces a functional change, as the code that generates the `Schema` object, and in particular the `accumulateTypeDefinitions` method, also does certain correctness checks, to prevent exposing a spec-incompliant GraphQL schema. If these correctness checks are being done at parsing time rather than startup time, then we catch certain errors only later on. For this reason, this PR adds an explicit run of this type accumulation at startup time. For efficiency reasons, and since this correctness check is not essential for correct operation of HGE, this is done for the admin role only.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3231
GitOrigin-RevId: 23701c548b785929b28667025436b6ce60bfe1cd
We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema.
Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects.
We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e46 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type:
```haskell
tableSelectionSet ::
forall b r m n.
MonadBuildSchema b r m n =>
SourceName ->
TableInfo b ->
SelPermInfo b ->
m (Parser 'Output n (AnnotatedFields b))
```
There are three reasons to change this.
1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125.
2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read.
3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068.
Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter.
One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role.
So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608
GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
### Description
This PR is the result of a discussion in #3363. Namely, we would like to remove all uses of `unsafeMkName`, or at the very least document every single one of them, to avoid similar issues. To do so, this PR does the following:
- it adds a hlint suggestion not to use that function:
- suggestions don't mark the PR as failed, but will be shown at review time
- it is possible to disable that hint with `{- HLINT ignore myFunction "unsafe" -}`
- wherever possible, it removes uses of `unsafeMkName` in favour of `mkName`
- it adds a comment with a tracking issue for the two remaining uses:
- #3478
- #3479
### Remaining work
- discuss whether this hint should make the linter step fail, since the linter step isn't required to merge anyway, and there is a way to disable the hint wherever we think the use of that function is acceptable
- check that none of those uses were load-bearing and result in errors now
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3480
GitOrigin-RevId: 0a7e3e9d1a48185764c04ab61e34b58273af347c
This commit introduces an "experimental" backend adapter to the GraphQL Engine.
It defines a high-level interface which will eventually be used as the basis for implementing separate data source query generation & marshaling services that communicate with the GraphQL Engine Server via some protocol.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2684
Co-authored-by: awjchen <13142944+awjchen@users.noreply.github.com>
Co-authored-by: Chris Parks <592078+cdparks@users.noreply.github.com>
GitOrigin-RevId: 4463b682142ad6e069e223b88b14db511f634768
This PR pretty much does the same thing to remote relationship types in schemacache as what #2979 did to remote relationship types in the IR. On main remote relationships are represented by types of form `T from to`. This PR changes it to `T from` which makes it a lot more reusable.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3037
GitOrigin-RevId: 90a5c9e2346c8dc2da6ec5b8c970d6c863d2afb8
this pr modifies the representation chosen for introspection parsers, "pushing down" the `Schema` input so it is not required to build the parser anymore. instead, the value produced when the parser is evaluated becomes a function that consumes a schema:
```diff
-schema :: MonadParse n => Schema -> FieldParser n ( J.Value)
+schema :: MonadParse n => FieldParser n (Schema -> J.Value)
```
this addresses points (1) and (2) of #2833 and is intended to make #2799 easier: we will need to enforce permissions when generating introspection objects, hiding fields the user is not allowed to see, so if we can pass the schema _later_, we can build this parser once, evaluate it once to (morally) obtain a function `Schema -> Value`, and simply run that single `Schema -> Value` function on different role-based schemas.
(we really need some terminology to be fixed here: "parser" is already not the best name, and then we have parser vs value/function "returned" by parser vs...)
however, we have immediate benefits: we no longer _need_ a `Schema` object to build the introspection parsers! this means we can remove the bogus "degenerate case" schema that is currently constructed in `emptyIntrospection` (and indeed we remove that binding altogether).
(fun fact: the diff for this pull request has a negative line count despite adding a lot of comments. @abooij says i have bragging rights in perpetuity now, à la @nicuveo)
changes:
- internal changes to the operation of the server, invisible outside of a small number of `GraphQL.Schema.*` modules
- no user-facing changes
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2835
Co-authored-by: Auke Booij <164426+abooij@users.noreply.github.com>
Co-authored-by: Brandon Simmons <210815+jberryman@users.noreply.github.com>
GitOrigin-RevId: 9990f53b8f5c733424c4d71a24d94c13dee842ba
This PR simplifies the types that represent a remote relationship in IR so that they can be reused in other parts (in remote schema types) which could have remote relationships.
The comments on the PR explain the main changes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2979
GitOrigin-RevId: 559c51d9d6ae79e2183ce4347018741b9096ac74
GraphQL types can refer to each other in a circular way. The PDV framework used to use values of type `Unique` to recognize two fragments of GraphQL schema as being the same instance. Internally, this is based on `Data.Unique` from the `base` package, which simply increases a counter on every creation of a `Unique` object.
**NB**: The `Unique` values are _not_ used for knot tying the schema combinators themselves (i.e. `Parser`s). The knot tying for `Parser`s is purely based on keys provided to `memoizeOn`. The `Unique` values are _only_ used to recognize two pieces of GraphQL _schema_ as being identical. Originally, the idea was that this would help us with a perfectly correct identification of GraphQL types. But this fully correct equality checking of GraphQL types was never implemented, and does not seem to be necessary to prevent bugs.
Specifically, these `Unique` values are stored as part of `data Definition a`, which specifies a part of our internal abstract syntax tree for the GraphQL types that we expose. The `Unique` values get initialized by the `SchemaT` effect.
In #2894 and #2895, we are experimenting with how (parts of) the GraphQL types can be hidden behind certain permission predicates. This would allow a single GraphQL schema in memory to serve all roles, implementing #2711. The permission predicates get evaluated at query parsing time when we know what role is doing a certain request, thus outputting the correct GraphQL types for that role.
If the approach of #2895 is followed, then the `Definition` objects, and thus the `Unique` values, would be hidden behind the permission predicates. Since the permission predicates are evaluated only after the schema is already supposed to be built, this means that the permission predicates would prevent us from initializing the `Unique` values, rendering them useless.
The simplest remedy to this is to remove our usage of `Unique` altogether from the GraphQL schema and schema combinators. It doesn't serve a functional purpose, doesn't prevent bugs, and requires extra bookkeeping.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2980
GitOrigin-RevId: 50d3f9e0b9fbf578ac49c8fc773ba64a94b1f43d
### Description
This PR changes the internal representation of a parsed remote schema. We were still using a list of type definitions, meaning every time we were doing a type lookup we had to iterate through a linked list! 🙀 It was very noticeable on large schemas, that need to do a lot of lookups. This PR consequently changes the internal representation to a HashMap. Building the OneGraph schema on my machine now takes **23 seconds**, compared to **367 seconds** before this patch.
Some important points:
- ~~this PR removes a check for type duplication in remote schemas; it's unclear to me whether that's something we need to add back or not~~ (no longer true)
- this PR makes it obvious that we do not distinguish between "this remote schema is missing type X" and "this remote schema expects type X to be an object, but it's a scalar"; this PR doesn't change anything about it, but adds a comment where we could surface that error (see [2991](https://github.com/hasura/graphql-engine-mono/issues/2991))
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2963
GitOrigin-RevId: f5c96ad40f4e0afcf8cef635b4d64178111f98d3
Source typename customization (hasura/graphql-engine@aac64f2c81) introduced a mechanism to change certain names in the GraphQL schema that is exposed. In particular it allows last-minute modification of:
1. the names of some types, and
2. the names of some root fields.
The above two items are assigned distinct customization algorithms, and at times both algorithms are in scope. So a need to distinguish them is needed.
In the original design, this was addressed by introducing a newtype wrapper `Typename` around GraphQL `Name`s, dedicated to the names of types. However, in the majority of the codebase, type names are also represented by `Name`. For this reason, it was unavoidable to allow for easy conversion. This was supported by a `HasName Typename` instance, as well as by publishing the constructors of `Typename`.
This means that the type safety that newtypes can add is lost. In particular, it is now very easy to confuse type name customization with root field name customization.
This refactors the above design by instead introducing newtypes around the customization operations:
```haskell
newtype MkTypename = MkTypename {runMkTypename :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
newtype MkRootFieldName = MkRootFieldName {runMkRootFieldName :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
```
The `Monoid` instance allows easy composition of customization operations, piggybacking off of the type of `Endo`maps.
This design allows safe co-existence of the two customization algorithms, while avoiding the syntactic overhead of packing and unpacking newtypes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2989
GitOrigin-RevId: da3a353a9b003ee40c8d0a1e02872e99d2edd3ca
We'll see if this improves compile times at all, but I think it's worth
doing as at least the most minimal form of module documentation.
This was accomplished by first compiling everything with
-ddump-minimal-imports, and then a bunch of scripting (with help from
ormolu)
**EDIT** it doesn't seem to improve CI compile times but the noise floor is high as it looks like we're not caching library dependencies anymore
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2730
GitOrigin-RevId: 667eb8de1e0f1af70420cbec90402922b8b84cb4
>
### Description
>
Insert mutations for MSSQL backend. This PR implements execution logic.
### Changelog
- [x] `CHANGELOG.md` is updated with user-facing content relevant to this PR. If no changelog is required, then add the `no-changelog-required` label.
### Affected components
- [x] Server
- [x] Tests
### Related Issues
->
Close https://github.com/hasura/graphql-engine-mono/issues/2114
### Steps to test and verify
>
Track a MSSQL table and perform the generated insert mutation to test.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2248
Co-authored-by: Abby Sassel <3883855+sassela@users.noreply.github.com>
Co-authored-by: Philip Lykke Carlsen <358550+plcplc@users.noreply.github.com>
GitOrigin-RevId: 936f138c80d7a928180e6e7b0c4da64ecc1f7ebc