## Description
This change adds support for nested object fields in HGE IR and Schema Cache, the Data Connectors backend and API, and the MongoDB agent.
### Data Connector API changes
- The `/schema` endpoint response now includes an optional set of GraphQL type definitions. Table column types can refer to these definitions by name.
- Queries can now include a new field type `object` which contains a column name and a nested query. This allows querying into a nested object within a field.
### MongoDB agent changes
- Add support for querying into nested documents using the new `object` field type.
### HGE changes
- The `Backend` type class has a new type family `XNestedObjects b` which controls whether or not a backend supports querying into nested objects. This is currently enabled only for the `DataConnector` backend.
- For backends that support nested objects, the `FieldInfo` type gets a new constructor `FINestedObject`, and the `AnnFieldG` type gets a new constructor `AFNestedObject`.
- If the DC `/schema` endpoint returns any custom GraphQL type definitions they are stored in the `TableInfo` for each table in the source.
- During schema cache building, the function `addNonColumnFields` will check whether any column types match custom GraphQL object types stored in the `TableInfo`. If so, they are converted into `FINestedObject` instead of `FIColumn` in the `FieldInfoMap`.
- When building the `FieldParser`s from `FieldInfo` (function `fieldSelection`) any `FINestedObject` fields are converted into nested object parsers returning `AFNestedObject`.
- The `DataConnector` query planner converts `AFNestedObject` fields into `object` field types in the query sent to the agent.
## Limitations
### HGE not yet implemented:
- Support for nested arrays
- Support for nested objects/arrays in mutations
- Support for nested objects/arrays in order-by
- Support for filters (`where`) in nested objects/arrays
- Support for adding custom GraphQL types via track table metadata API
- Support for interface and union types
- Tests for nested objects
### Mongo agent not yet implemented:
- Generate nested object types from validation schema
- Support for aggregates
- Support for order-by
- Configure agent port
- Build agent in CI
- Agent tests for nested objects and MongoDB agent
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7844
GitOrigin-RevId: aec9ec1e4216293286a68f9b1af6f3f5317db423
### Description
Each Backend executes queries against the database in a slightly different stack: Postgres uses its own `TXeT`, MSSQL uses a variant of it, BigQuery is simply in `ExceptT QErr IO`... To accommodate those variations, we had originally introduced an `ExecutionMonad b` type family in `BackendExecute`, allowing each backend to describe its own stack. It was then up to that backend's `BackendTransport` instance to implement running said stack, and converting the result back into our main app monad.
However, this was not without complications: `TraceT` is one of them: as it usually needs to be on the top of the stack, converting from one stack to the other implies the use `interpTraceT`, which is quite monstrous. Furthermore, as part of the Entitlement Services work, we're trying to move to a "Services" architecture in which the entire engine runs in one base monad, that delegates features and dependencies to monad constraints; and as a result we'd like to minimize the number of different monad stacks we have to maintain and translate from and to in the codebase.
To improve things, this PR changes `ExecutionMonad b` from an _absolute_ stack to a _relative_ one: i.e.: what needs to be stacked on top of our base monad for the execution. In `Transport`, we then only need to pop the top of the stack, and voila. This greatly simplifies the implementation of the backends, as there's no longer any need to do any stack transformation: MySQL's implementation becomes a `runIdentityT`! This also removes most mentions of `TraceT` from the execution code since it's no longer required: we can rely on the base monad's existing `MonadTrace` constraint.
To continue encapsulating monadic actions in `DBStepInfo` and avoid threading a bunch of `forall` all over the place, this PR introduces a small local helper: `OnBaseMonad`. One only downside of all this is that this requires adding `MonadBaseControl IO m` constraint all over the place: previously, we would run directly on `IO` and lift, and would therefore not need to bring that constraint all the way.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7789
GitOrigin-RevId: e9b2e431c5c47fa9851abf87545c0415ff6d1a12
Hooks up event trigger codecs from #7237. This required fixing a problem where some backend types implemented `defaultTriggerOnReplication` with `error` which caused the server to crash when evaluating those for default values in codecs. The changes here add a type family to `Backend` called `XEventTriggers` that signals backend support for event triggers, and changes the type of `defaultTriggerOnReplication` to from `TriggerOnReplication` to `Maybe (XEventTriggers b, TriggerOnReplication)` so that it can only be implemented with a `Just` value if `XEventTriggers b` is inhabited. This emulates some existing type families in `Backend`. (Thanks to @daniel-chambers for this suggestion!)
I used the implementation of `defaultTriggerOnReplication` as a signal for event triggers support to prune the Metadata API so that event trigger fields will not appear in the OpenAPI spec for backend types that do not support event triggers. The codec version of the API will also not emit or accept those fields for those backend types. I think I could use `Typeable` to test whether `XEventTriggers` is `Void` instead of testing whether `defaultTriggerOnReplication` is `Nothing`. But the codec implementation will crash anyway if `defaultTriggerOnReplication` is `Nothing`.
I checked to make sure that graphql-engine-pro still compiles.
Ticket: https://hasurahq.atlassian.net/browse/GDC-521
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7295
GitOrigin-RevId: 2b2dd44291513266107ca25cf330319bf53a8b66
## Description ✍️
This PR introduces a new feature to enable/disable event triggers during logical replication of table data for PostgreSQL and MS-SQL data sources. We introduce a new field `trigger_on_replication` in the `*_create_event_trigger` metadata API. By default the event triggers will not fire for logical data replication.
## Changelog ✍️
__Component__ : server
__Type__: feature
__Product__: community-edition
### Short Changelog
Add option to enable/disable event triggers on logically replicated tables
### Related Issues ✍
https://github.com/hasura/graphql-engine/issues/8814https://hasurahq.atlassian.net/browse/GS-252
### Solution and Design
- By default, triggers do **not** fire when the session mode is `replica` in Postgres, so if the `triggerOnReplication` is set to `true` for an event trigger we run the query `ALTER TABLE #{tableTxt} ENABLE ALWAYS TRIGGER #{triggerNameTxt};` so that the trigger fires always irrespective of the `session_replication_role`
- By default, triggers do fire in case of replication in MS-SQL, so if the `triggerOnReplication` is set to `false` for an event trigger we add a clause `NOT FOR REPLICATION` to the the SQL when the trigger is created/altered, which sets the `is_not_for_replication` for the trigger as `true` and it does not fire during logical replication.
### Steps to test and verify ✍
- Run hspec integration tests for HGE
## Server checklist ✍
### Metadata ✍
Does this PR add a new Metadata feature?
- ✅ Yes
- Does `export_metadata`/`replace_metadata` supports the new metadata added?
- ✅
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6953
Co-authored-by: Puru Gupta <32328846+purugupta99@users.noreply.github.com>
Co-authored-by: Sean Park-Ross <94021366+seanparkross@users.noreply.github.com>
GitOrigin-RevId: 92731328a2bbdcad2302c829f26f9acb33c36135
Mostly trying to avoid tricky `Arrows` syntax, and unnecessary use of the `Hasura.Incremental` framework.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6997
GitOrigin-RevId: 9a2f5883e7e29af164e1581049ae003afec2cbe4
What is the `Cacheable` type class about?
```haskell
class Eq a => Cacheable a where
unchanged :: Accesses -> a -> a -> Bool
default unchanged :: (Generic a, GCacheable (Rep a)) => Accesses -> a -> a -> Bool
unchanged accesses a b = gunchanged (from a) (from b) accesses
```
Its only method is an alternative to `(==)`. The added value of `unchanged` (and the additional `Accesses` argument) arises _only_ for one type, namely `Dependency`. Indeed, the `Cacheable (Dependency a)` instance is non-trivial, whereas every other `Cacheable` instance is completely boilerplate (and indeed either generated from `Generic`, or simply `unchanged _ = (==)`). The `Cacheable (Dependency a)` instance is the only one where the `Accesses` argument is not just passed onwards.
The only callsite of the `unchanged` method is in the `ArrowCache (Rule m)` method. That is to say that the `Cacheable` type class is used to decide when we can re-use parts of the schema cache between Metadata operations.
So what is the `Cacheable (Dependency a)` instance about? Normally, the output of a `Rule m a b` is re-used when the new input (of type `a`) is equal to the old one. But sometimes, that's too coarse: it might be that a certain `Rule m a b` only depends on a small part of its input of type `a`. A `Dependency` allows us to spell out what parts of `a` are being depended on, and these parts are recorded as values of types `Access a` in the state `Accesses`.
If the input `a` changes, but not in a way that touches the recorded `Accesses`, then the output `b` of that rule can be re-used without recomputing.
So now you understand _why_ we're passing `Accesses` to the `unchanged` method: `unchanged` is an equality check in disguise that just needs some additional context.
But we don't need to pass `Accesses` as a function argument. We can use the `reflection` package to pass it as type-level context. So the core of this PR is that we change the instance declaration from
```haskell
instance (Cacheable a) => Cacheable (Dependency a) where
```
to
```haskell
instance (Given Accesses, Eq a) => Eq (Dependency a) where
```
and use `(==)` instead of `unchanged`.
If you haven't seen `reflection` before: it's like a `MonadReader`, but it doesn't require a `Monad`.
In order to pass the current `Accesses` value, instead of simply passing the `Accesses` as a function argument, we need to instantiate the `Given Accesses` context. We use the `give` method from the `reflection` package for that.
```haskell
give :: forall r. Accesses -> (Given Accesses => r) -> r
unchanged :: (Given Accesses => Eq a) => Accesses -> a -> a -> Bool
unchanged accesses a b = give accesses (a == b)
```
With these three components in place, we can delete the `Cacheable` type class entirely.
The remainder of this PR is just to remove the `Cacheable` type class and its instances.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6877
GitOrigin-RevId: 7125f5e11d856e7672ab810a23d5bf5ad176e77f