### Description
This PR changes all the schema code to operate in a specific `SchemaT` monad, rather than in an arbitrary `m` monad. `SchemaT` is intended to be used opaquely with `runSourceSchema` and `runRemoteSchema`. The main goal of this is to allow a different reader context per part of the schema: this PR also minimizes the contexts. This means that we no longer require `SchemaOptions` when building remote schemas' schema, and this PR therefore removes a lot of dummy / placeholder values accordingly.
### Performance and stacking
This PR has been through several iterations. #5339 was the original version, that accomplished the same thing by stacking readers on top of the stack at every remote relationship boundary. This raised performance concerns, and @0x777 confirmed with an ad-hoc test that in some extreme cases we could see up to a 10% performance impact. This version, while more verbose, allows us to unstack / re-stack the readers, and avoid that problem. #5517 adds a new benchmark set to be able to automatically measure this on every PR.
### Remaining work
- [x] a comment (or perhaps even a Note?) should be added to `SchemaT`
- [x] we probably want for #5517 to be merged first so that we can confirm the lack of performance penalty
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/5458
GitOrigin-RevId: e06b83d90da475f745b838f1fd8f8b4d9d3f4b10
The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do.
The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers.
This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`.
However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase.
The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770
Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com>
GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
### Description
This PR is a first step in a series of cleanups of action relationships. This first step does not contain any behavioral change, and it simply reorganizes / prunes / rearranges / documents the code. Mainly:
- it divides some files in RQL.Types between metadata types, schema cache types, execution types;
- it renames some types for consistency;
- it minimizes exports and prunes unnecessary types;
- it moves some types in places where they make more sense;
- it replaces uses of `DMap BackendTag` with `BackendMap`.
Most of the "movement" within files re-organizes declarations in a "top-down" fashion, by moving all TH splices to the end of the file, which avoids order or declarations mattering.
### Optional list types
One main type change this PR makes is a replacement of variant list types in `CustomTypes.hs`; we had `Maybe [a]`, or sometimes `Maybe (NonEmpty a)`. This PR harmonizes all of them to `[a]`, as most of the code would use them as such, by doing `fromMaybe []` or `maybe [] toList`.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4613
GitOrigin-RevId: bc624e10df587eba862ff27a5e8021b32d0d78a2
## Description
This PR removes `RQL.Types`, which was now only re-exporting a bunch of unrelated modules.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4363
GitOrigin-RevId: 894f29a19bff70b3dad8abc5d9858434d5065417
This commit applies ormolu to the whole Haskell code base by running `make format`.
For in-flight branches, simply merging changes from `main` will result in merge conflicts.
To avoid this, update your branch using the following instructions. Replace `<format-commit>`
by the hash of *this* commit.
$ git checkout my-feature-branch
$ git merge <format-commit>^ # and resolve conflicts normally
$ make format
$ git commit -a -m "reformat with ormolu"
$ git merge -s ours post-ormolu
https://github.com/hasura/graphql-engine-mono/pull/2404
GitOrigin-RevId: 75049f5c12f430c615eafb4c6b8e83e371e01c8e
GJ IR changes cherry-picked from the original GJ branch. There is a separate (can be merged independently) PR for metadata changes (#1727) and there will be a different PR upcoming PR for execution changes.
https://github.com/hasura/graphql-engine-mono/pull/1810
Co-authored-by: Vamshi Surabhi <6562944+0x777@users.noreply.github.com>
GitOrigin-RevId: c31956af29dc9c9b75d002aba7d93c230697c5f4
### Description
This PR adds the required IR for DB to DB joins, based on @paf31 and @0x777 's `feature/db-to-db` branch.
To do so, it also refactors the IR to introduce a new type parameter, `r`, which is used to recursively constructs the `v` parameter of remote QueryDBs. When collecting remote joins, we replace `r` with `Const Void`, indicating at the type level that there cannot be any leftover remote join.
Furthermore, this PR refactors IR.Select for readability, moves some code from IR.Root to IR.Select to avoid having to deal with circular dependencies, and makes it compile by adding `error` in all new cases in the execution pipeline.
The diff doesn't make it clear, but most of Select.hs is actually unchanged. Declarations have just been reordered by topic, in the following order:
- type declarations
- instance declarations
- type aliases
- constructor functions
- traverse functions
https://github.com/hasura/graphql-engine-mono/pull/1580
Co-authored-by: Phil Freeman <630306+paf31@users.noreply.github.com>
GitOrigin-RevId: bbdcb4119cec8bb3fc32f1294f91b8dea0728721
Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST.
This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible).
The approach now changes to this:
1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed.
1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary.
1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response.
### Known issues
1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR.
1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR.
1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins.
1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST.
1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code.
### Notes to the reviewers
I think it is best reviewed commit by commit.
1. The first one is very straight forward.
1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore
1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor
1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server.
https://github.com/hasura/graphql-engine-mono/pull/1497
GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
This PR generalizes a bunch of metadata structures.
Most importantly, it changes `SourceCache` to hold existentially quantified values:
```
data BackendSourceInfo =
forall b. Backend b => BackendSourceInfo (SourceInfo b)
type SourceCache = HashMap SourceName BackendSourceInfo
```
This changes a *lot* of things throughout the code. For now, all code using the schema cache explicitly casts sources to Postgres, meaning that if any non-Postgres `SourceInfo` makes it to the cache, it'll be ignored.
That means that after this PR is submitted, we can split work between two different aspects:
- creating `SourceInfo` for other backends
- handling those other sources down the line
GitOrigin-RevId: fb9ea00f32e840fc33c5467896fb1dfa5283ab42
### Description
This PR updates the graphql schema to be backend-agnostic. To do so, it also moves the definition of operators to `BackendSchema`, to be specified differently per backend.
GitOrigin-RevId: 35b9d2d1bff93fb68b872d6ab0d3d12ec12c1b93
This PR makes a bunch of schema generation code in Hasura.GraphQL.Schema backend-agnostic, by moving the backend-specific parts into a new BackendSchema type class. This way, the schema generation code can be reused for other backends, simply by implementing new instances of the BackendSchema type class.
This work is now in a state where the schema generators are sufficiently generic to accept the implementation of a new backend. That means that we can start exposing MS SQL schema. Execution is not implemented yet, of course.
The branch currently does not support computed fields or Relay. This is, in a sense, intentional: computed field support is normally baked into the schema generation (through the fieldSelection schema generator), and so this branch shows a programming technique that allows us to expose certain GraphQL schema depending on backend support. We can write support for computed fields and Relay at a later stage.
Co-authored-by: Antoine Leblanc <antoine@hasura.io>
GitOrigin-RevId: df369fc3d189cbda1b931d31678e9450a6601314