## Description
This is the first step in making use of Logical Models with document databases such as MongoDB. As part of schema introspection, a data connector agent can supply a set of custom types that can be used to describe the schema for columns within the tables of the database (or _fields_ within a _document collection_ in MongoDB terminology).
Previously, we were storing these custom types as `TableObjectType`s within the `TableCoreInfo` for each table.
In this PR we
- replace the `TableObjectTypes` with `LogicalModel` types
- store these directly within the `DBObjectsIntrospection` instead of within the `TableCoreInfo` for each table. (The custom types are shared at the source level so there was no reason to have a separate set of types for each table.)
- When building the `SourceInfo`, we combine the `LogicalModel`s from `DBObjectsIntrospection` with `LogicalModel`s from the user's metadata to create the set of `LogicalModels` in the `SourceInfo` within the `SchemaCache`. I.e. we combine the set of types obtained by database introspection with the set of types specified by the user in the metadata. If two types have the same name, we use the type defined in the metadata.
## Limitations and future work
- Provide a way for the user to associate a meta-data defined `LogicalModel` with a table instead of requiring one to be provided by DB introspection
- Provide a way for the user to edit the `LogicalModel` types provided by introspection and add them to the metadata.
- Allow a `LogicalModel` object type to describe and entire table rather than just individual columns.
- Better handling for "unknown" types, e.g. if the type of a collection (or part of a collection) is unknown we should treat it as a JSON scalar value. This may also involve adding an `_everything` field which returns the full document as a JSON scalar.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/9345
GitOrigin-RevId: 5cec72fc1be1380d8600f7be547bbf71aad770bd
## Description
This change adds support for querying into nested arrays in Data Connector agents that support such a concept (currently MongoDB).
### DC API changes
- New API type `ColumnType` which allows representing the type of a "column" as either a scalar type, an object reference or an array of `ColumnType`s. This recursive definition allows arbitrary nesting of arrays of types.
- The `type` fields in the API types `ColumnInfo` and `ColumnInsertSchema` now take a `ColumnType` instead of a `ScalarType`.
- To ensure backwards compatibility, a `ColumnType` representing a scalar serialises and deserialises to the same representation as `ScalarType`.
- In queries, the `Field` type now has a new constructor `NestedArrayField`. This contains a nested `Field` along with optional `limit`, `offset`, `where` and `order_by` arguments. (These optional arguments are not yet used by either HGE or the MongoDB agent.)
### MongoDB Haskell agent changes
- The `/schema` endpoint will now recognise arrays within the JSON validation schema and generate corresponding arrays in the DC schema.
- The `/query` endpoint will now handle `NestedArrayField`s within queries (although it does not yet handle `limit`, `offset`, `where` and `order_by`).
### HGE server changes
- The `Backend` type class adds a new type family `XNestedArrays b` to enable nested arrays on a per-backend basis (currently enabled only for the `DataConnector` backend.
- Within `RawColumnInfo` the column type is now represented by a new type `RawColumnType b` which mirrors the shape of the DC API `ColumnType`, but uses `XNestedObjects b` and `XNestedArrays b` type families to allow turning nested object and array supports on or off for a particular backend. In the `DataConnector` backend `API.CustomType` is converted into `RawColumnInfo 'DataConnector` while building the schema.
- In the next stage of schema building, the `RawColumnInfo` is converted into a `StructuredColumnInfo` which allows us to represent the three different types of columns: scalar, object and array. TODO: the `StructuredColumnInfo` looks very similar to the Logical Model types. The main difference is that it uses the `XNestedObjects` and `XNestedArrays` type families. We should be able to combine these two representations.
- The `StructuredColumnInfo` is then placed into a `FIColumn` `FieldInfo`. This involved some refactoring of `FieldInfo` as I had previously split out `FINestedObject` into a separate constructor. However it works out better to represent all "column" fields (i.e. scalar, object and array) using `FIColumn` as this make it easier to implement permission checking correctly. This is the reason the `StructuredColumnInfo` was needed.
- Next, the `FieldInfo` are used to generate `FieldParser`s. We add a new constructor to `AnnFieldG` for `AFNestedArray`. An `AFNestedArray` field parser can contain either a simple array selection or an array aggregate. Simple array `FieldParsers` are currently limited to subfield selection. We will add support for limit, offset, where and order_by in a future PR. We also don't yet generate array aggregate `FieldParsers.
- The new `AFNestedArray` field is handled by the `QueryPlan` module in the `DataConnector` backend. There we generate an `API.NestedArrayField` from the AFNestedArray. We also handle nested arrays when reshaping the response from the DC agent.
## Limitations
- Support for limit, offset, filter (where) and order_by is not yet fully implemented, although it should not be hard to add this
- Support for aggregations on nested arrays is not yet fully implemented
- Permissions involving nested arrays (and objects) not yet implemented
- This should be integrated with Logical Model types, but that will happen in a separate PR
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/9149
GitOrigin-RevId: 0e7b71a994fc1d2ca1ef73bfe7b96e95b5328531
The simplification will allow us to avoid a few `MonadError QErr m` constsraints in the future - this effect can be created locally instead of reusing a global one.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/8729
GitOrigin-RevId: 851e28b1f5bfe4c47da43fa324714a941ef25c57
## Description
This change adds support for nested object fields in HGE IR and Schema Cache, the Data Connectors backend and API, and the MongoDB agent.
### Data Connector API changes
- The `/schema` endpoint response now includes an optional set of GraphQL type definitions. Table column types can refer to these definitions by name.
- Queries can now include a new field type `object` which contains a column name and a nested query. This allows querying into a nested object within a field.
### MongoDB agent changes
- Add support for querying into nested documents using the new `object` field type.
### HGE changes
- The `Backend` type class has a new type family `XNestedObjects b` which controls whether or not a backend supports querying into nested objects. This is currently enabled only for the `DataConnector` backend.
- For backends that support nested objects, the `FieldInfo` type gets a new constructor `FINestedObject`, and the `AnnFieldG` type gets a new constructor `AFNestedObject`.
- If the DC `/schema` endpoint returns any custom GraphQL type definitions they are stored in the `TableInfo` for each table in the source.
- During schema cache building, the function `addNonColumnFields` will check whether any column types match custom GraphQL object types stored in the `TableInfo`. If so, they are converted into `FINestedObject` instead of `FIColumn` in the `FieldInfoMap`.
- When building the `FieldParser`s from `FieldInfo` (function `fieldSelection`) any `FINestedObject` fields are converted into nested object parsers returning `AFNestedObject`.
- The `DataConnector` query planner converts `AFNestedObject` fields into `object` field types in the query sent to the agent.
## Limitations
### HGE not yet implemented:
- Support for nested arrays
- Support for nested objects/arrays in mutations
- Support for nested objects/arrays in order-by
- Support for filters (`where`) in nested objects/arrays
- Support for adding custom GraphQL types via track table metadata API
- Support for interface and union types
- Tests for nested objects
### Mongo agent not yet implemented:
- Generate nested object types from validation schema
- Support for aggregates
- Support for order-by
- Configure agent port
- Build agent in CI
- Agent tests for nested objects and MongoDB agent
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7844
GitOrigin-RevId: aec9ec1e4216293286a68f9b1af6f3f5317db423
This PR is on top of #7789.
### Description
This PR entirely rewrites the API of the Tracing library, to make `interpTraceT` a thing of the past. Before this change, we ran traces by sticking a `TraceT` on top of whatever we were doing. This had several major drawbacks:
- we were carrying a bunch of `TraceT` across the codebase, and the entire codebase had to know about it
- we needed to carry a second class constraint around (`HasReporterM`) to be able to run all of those traces
- we kept having to do stack rewriting with `interpTraceT`, which went from inconvenient to horrible
- we had to declare several behavioral instances on `TraceT m`
This PR rewrite all of `Tracing` using a more conventional model: there is ONE `TraceT` at the bottom of the stack, and there is an associated class constraint `MonadTrace`: any part of the code that happens to satisfy `MonadTrace` is able to create new traces. We NEVER have to do stack rewriting, `interpTraceT` is gone, and `TraceT` and `Reporter` become implementation details that 99% of the code is blissfully unaware of: code that needs to do tracing only needs to declare that the monad in which it operates implements `MonadTrace`.
In doing so, this PR revealed **several bugs in the codebase**: places where we were expecting to trace something, but due to the default instance of `HasReporterM IO` we would actually not do anything. This PR also splits the code of `Tracing` in more byte-sized modules, with the goal of potentially moving to `server/lib` down the line.
### Remaining work
This PR is a draft; what's left to do is:
- [x] make Pro compile; i haven't updated `HasuraPro/Main` yet
- [x] document Tracing by writing a note that explains how to use the library, and the meaning of "reporter", "trace" and "span", as well as the pitfalls
- [x] discuss some of the trade-offs in the implementation, which is why i'm opening this PR already despite it not fully building yet
- [x] it depends on #7789 being merged first
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7791
GitOrigin-RevId: cadd32d039134c93ddbf364599a2f4dd988adea8