{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DuplicateRecordFields #-} {-# LANGUAGE UndecidableInstances #-} -- | This modules defines the tree of Select types: how we represent a query internally, from its top -- level 'QueryDB' down to each individual field. Most of those types have three type arguments: -- -- b: BackendType -- The backend that is targeted by that specific select (Postgres Vanilla, MSSQL...); we use the -- type families in the Backend class to decide how different parts of the IR are represented in -- different backends. -- -- v: Type -- The type of the leaf values in our AST; used almost exclusively for column values, over which -- queries can be parameterized. The output of the parser phase will use @UnpreparedValue b@ for -- the leaves, and most backends will then transform the AST to interpret those values and -- consequently change @v@ to be @SQLExpression b@ -- -- r: BackendType -> Type -- Joins across backends mean that the aforementioned @b@ parameter won't be the same throughout -- the entire tree; at some point we will have an 'AnyBackend' used to encapsulate a branch that -- uses a different @b@. We still want, however, to be able to parameterize the values of the -- leaves in that separate branch, and that's what the @r@ parameter is for. We also use -- 'UnpreparedValue' here during the parsing phase, meaning all leaf values will be -- @UnpreparedValue b@ for their respective backend @b@, and most backends will then transform -- their AST, cutting all such remote branches, and therefore using @Const Void@ for @r@. module Hasura.RQL.IR.Select ( AggregateField (..), AggregateFields, AggregateOp (..), AnnAggregateSelect, AnnAggregateSelectG, AnnColumnField (..), AnnField, AnnFieldG (..), AnnFields, AnnFieldsG, AnnNestedObjectSelectG (..), AnnNestedObjectSelect, AnnNestedArraySelectG (..), AnnNestedArraySelect, AnnObjectSelect, AnnObjectSelectG (..), AnnSimpleSelect, AnnSimpleSelectG, AnnSimpleStreamSelect, AnnSimpleStreamSelectG, ArrayAggregateSelect, ArrayAggregateSelectG, ArrayConnectionSelect, ArrayRelationSelectG, ArraySelect, ArraySelectFieldsG, ArraySelectG (..), SelectionField (..), SelectionFields, ComputedFieldScalarSelect (..), ComputedFieldSelect (..), ConnectionField (..), ConnectionFields, ConnectionSelect (..), ConnectionSlice (..), ConnectionSplit (..), ConnectionSplitKind (..), EdgeField (..), EdgeFields, ObjectRelationSelect, ObjectRelationSelectG, PageInfoField (..), PageInfoFields, QueryDB (..), RemoteSourceSelect (..), RemoteRelationshipSelect (..), SourceRelationshipSelection (..), TableAggregateField, TableAggregateFieldG (..), TableAggregateFields, TableAggregateFieldsG, GroupByG (..), GroupByField (..), GroupKeyField (..), CountDistinct (..), insertFunctionArg, mkAnnColumnField, mkAnnColumnFieldAsText, traverseSourceRelationshipSelection, module Hasura.RQL.IR.Select.AnnSelectG, module Hasura.RQL.IR.Select.Args, module Hasura.RQL.IR.Select.From, module Hasura.RQL.IR.Select.OrderBy, module Hasura.RQL.IR.Select.TablePerm, module Hasura.RQL.IR.Select.RelationSelect, ) where import Data.Bifoldable import Data.HashMap.Strict qualified as HashMap import Data.Kind (Type) import Data.List.NonEmpty qualified as NE import Data.Sequence qualified as Seq import Hasura.Function.Cache import Hasura.Prelude import Hasura.RQL.IR.BoolExp import Hasura.RQL.IR.OrderBy import Hasura.RQL.IR.Select.AnnSelectG import Hasura.RQL.IR.Select.Args import Hasura.RQL.IR.Select.From import Hasura.RQL.IR.Select.OrderBy import Hasura.RQL.IR.Select.RelationSelect import Hasura.RQL.IR.Select.TablePerm import Hasura.RQL.Types.Backend import Hasura.RQL.Types.BackendType import Hasura.RQL.Types.Column import Hasura.RQL.Types.Common import Hasura.RQL.Types.ComputedField import Hasura.RQL.Types.Instances () import Hasura.RQL.Types.Relationships.Remote import Hasura.RQL.Types.Schema.Options (StringifyNumbers) -- Root selection data QueryDB (b :: BackendType) (r :: Type) v = QDBMultipleRows (AnnSimpleSelectG b r v) | QDBSingleRow (AnnSimpleSelectG b r v) | QDBAggregation (AnnAggregateSelectG b r v) | QDBConnection (ConnectionSelect b r v) | QDBStreamMultipleRows (AnnSimpleStreamSelectG b r v) deriving stock (Generic, Functor, Foldable, Traversable) instance (Backend b) => Bifoldable (QueryDB b) where bifoldMap f g = \case QDBMultipleRows annSel -> bifoldMapAnnSelectG f g annSel QDBSingleRow annSel -> bifoldMapAnnSelectG f g annSel QDBAggregation annSel -> bifoldMapAnnSelectG f g annSel QDBConnection connSel -> bifoldMap f g connSel QDBStreamMultipleRows annSel -> bifoldMapAnnSelectStreamG f g annSel -- Select type AnnSimpleSelectG b r v = AnnSelectG b (AnnFieldG b r) v type AnnAggregateSelectG b r v = AnnSelectG b (TableAggregateFieldG b r) v type AnnSimpleStreamSelectG b r v = AnnSelectStreamG b (AnnFieldG b r) v type AnnSimpleSelect b = AnnSimpleSelectG b Void (SQLExpression b) type AnnAggregateSelect b = AnnAggregateSelectG b Void (SQLExpression b) type AnnSimpleStreamSelect b = AnnSimpleStreamSelectG b Void (SQLExpression b) -- Relay select data ConnectionSelect (b :: BackendType) (r :: Type) v = ConnectionSelect { _csXRelay :: XRelay b, _csPrimaryKeyColumns :: PrimaryKeyColumns b, _csSplit :: Maybe (NE.NonEmpty (ConnectionSplit b v)), _csSlice :: Maybe ConnectionSlice, _csSelect :: (AnnSelectG b (ConnectionField b r) v) } deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AnnSelectG b (ConnectionField b r) v), Eq (ConnectionSlice), Eq (ConnectionSplit b v), Eq (PrimaryKeyColumns b) ) => Eq (ConnectionSelect b r v) deriving stock instance ( Backend b, Show (AnnSelectG b (ConnectionField b r) v), Show (ConnectionSlice), Show (ConnectionSplit b v), Show (PrimaryKeyColumns b) ) => Show (ConnectionSelect b r v) instance (Backend b) => Bifoldable (ConnectionSelect b) where bifoldMap f g ConnectionSelect {..} = foldMap (foldMap $ foldMap g) _csSplit <> bifoldMapAnnSelectG f g _csSelect data ConnectionSplit (b :: BackendType) v = ConnectionSplit { _csKind :: ConnectionSplitKind, _csValue :: v, _csOrderBy :: (OrderByItemG b (AnnotatedOrderByElement b v)) } deriving stock (Functor, Generic, Foldable, Traversable) deriving stock instance ( Backend b, Eq v, Eq (OrderByItemG b (AnnotatedOrderByElement b v)) ) => Eq (ConnectionSplit b v) deriving stock instance ( Backend b, Show v, Show (OrderByItemG b (AnnotatedOrderByElement b v)) ) => Show (ConnectionSplit b v) instance ( Backend b, Hashable v, Hashable (OrderByItemG b (AnnotatedOrderByElement b v)) ) => Hashable (ConnectionSplit b v) data ConnectionSlice = SliceFirst Int | SliceLast Int deriving stock (Show, Eq, Generic) deriving anyclass (Hashable) data ConnectionSplitKind = CSKBefore | CSKAfter deriving stock (Show, Eq, Generic) deriving anyclass (Hashable) -- Fields -- | captures a remote relationship's selection and the necessary context data RemoteRelationshipSelect b r = RemoteRelationshipSelect { -- | The fields on the table that are required for the join condition -- of the remote relationship _rrsLHSJoinFields :: HashMap FieldName (DBJoinField b), -- | The field that captures the relationship -- r ~ (RemoteRelationshipField UnpreparedValue) when the AST is emitted by the parser. -- r ~ Void when an execution tree is constructed so that a backend is -- absolved of dealing with remote relationships. _rrsRelationship :: r } deriving (Eq, Show, Functor, Foldable, Traversable) data AnnFieldG (b :: BackendType) (r :: Type) v = AFColumn (AnnColumnField b v) | AFObjectRelation (ObjectRelationSelectG b r v) | AFArrayRelation (ArraySelectG b r v) | AFComputedField (XComputedField b) ComputedFieldName (ComputedFieldSelect b r v) | -- | A remote relationship field AFRemote (RemoteRelationshipSelect b r) | AFNodeId (XRelay b) SourceName (TableName b) (PrimaryKeyColumns b) | AFExpression Text | -- | Nested object. AFNestedObject (AnnNestedObjectSelectG b r v) -- TODO(dmoverton): move XNestedObject to a field in AFNestedObject constructor for consistency with AFNestedArray | -- | Nested array AFNestedArray (XNestedObjects b) (AnnNestedArraySelectG b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AnnColumnField b v), Eq (ArraySelectG b r v), Eq (ComputedFieldSelect b r v), Eq (ObjectRelationSelectG b r v), Eq (RemoteRelationshipSelect b r), Eq (AnnNestedObjectSelectG b r v), Eq (AnnNestedArraySelectG b r v) ) => Eq (AnnFieldG b r v) deriving stock instance ( Backend b, Show (AnnColumnField b v), Show (ArraySelectG b r v), Show (ComputedFieldSelect b r v), Show (ObjectRelationSelectG b r v), Show (RemoteRelationshipSelect b r), Show (AnnNestedObjectSelectG b r v), Show (AnnNestedArraySelectG b r v) ) => Show (AnnFieldG b r v) instance (Backend b) => Bifoldable (AnnFieldG b) where bifoldMap f g = \case AFColumn col -> foldMap g col AFObjectRelation objRel -> foldMap (bifoldMap f g) objRel AFArrayRelation arrRel -> bifoldMap f g arrRel AFComputedField _ _ cf -> bifoldMap f g cf AFRemote r -> foldMap f r AFNodeId {} -> mempty AFExpression {} -> mempty AFNestedObject no -> bifoldMap f g no AFNestedArray _ na -> bifoldMap f g na type AnnField b = AnnFieldG b Void (SQLExpression b) type AnnFields b = AnnFieldsG b Void (SQLExpression b) mkAnnColumnField :: Column backend -> ColumnType backend -> Maybe (AnnColumnCaseBoolExp backend v) -> Maybe (ScalarSelectionArguments backend) -> AnnFieldG backend r v mkAnnColumnField col typ caseBoolExp colOpM = AFColumn (AnnColumnField col typ False colOpM caseBoolExp) mkAnnColumnFieldAsText :: ColumnInfo backend -> AnnFieldG backend r v mkAnnColumnFieldAsText ci = AFColumn (AnnColumnField (ciColumn ci) (ciType ci) True Nothing Nothing) traverseSourceRelationshipSelection :: (Applicative f, Backend backend) => (vf backend -> f (vg backend)) -> SourceRelationshipSelection backend r vf -> f (SourceRelationshipSelection backend r vg) traverseSourceRelationshipSelection f = \case SourceRelationshipObject s -> SourceRelationshipObject <$> traverse f s SourceRelationshipArray s -> SourceRelationshipArray <$> traverse f s SourceRelationshipArrayAggregate s -> SourceRelationshipArrayAggregate <$> traverse f s -- Aggregation fields data TableAggregateFieldG (b :: BackendType) (r :: Type) v = TAFAgg (AggregateFields b v) | TAFNodes (XNodesAgg b) (AnnFieldsG b r v) | TAFGroupBy (XGroupBy b) (GroupByG b r v) | TAFExp Text deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AggregateFields b v), Eq (AnnFieldsG b r v), Eq (GroupByG b r v) ) => Eq (TableAggregateFieldG b r v) deriving stock instance ( Backend b, Show (AggregateFields b v), Show (AnnFieldsG b r v), Show (GroupByG b r v) ) => Show (TableAggregateFieldG b r v) instance (Backend b) => Bifoldable (TableAggregateFieldG b) where bifoldMap :: (Monoid m) => (r -> m) -> (v -> m) -> TableAggregateFieldG b r v -> m bifoldMap mapR mapV = \case TAFAgg aggFields -> foldMap (foldMap $ foldMap mapV) aggFields TAFNodes _ fields -> foldMap (foldMap $ bifoldMap mapR mapV) fields TAFGroupBy _ groupByFields -> bifoldMap mapR mapV groupByFields TAFExp {} -> mempty data AggregateField (b :: BackendType) v = AFCount (CountType b) | AFOp (AggregateOp b v) | AFExp Text deriving (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (FunctionArgumentExp b v), Eq v) => Eq (AggregateField b v) deriving stock instance (Backend b, Show (FunctionArgumentExp b v), Show v) => Show (AggregateField b v) data AggregateOp (b :: BackendType) v = AggregateOp { _aoOp :: Text, _aoFields :: SelectionFields b v } deriving (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (FunctionArgumentExp b v), Eq v) => Eq (AggregateOp b v) deriving stock instance (Backend b, Show (FunctionArgumentExp b v), Show v) => Show (AggregateOp b v) data GroupByG (b :: BackendType) r v = GroupByG { _gbgKeys :: [GroupKeyField b], _gbgFields :: Fields (GroupByField b r v) } deriving (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (GroupByField b r v), Eq (GroupKeyField b)) => Eq (GroupByG b r v) deriving stock instance (Backend b, Show (GroupByField b r v), Show (GroupKeyField b)) => Show (GroupByG b r v) instance (Backend b) => Bifoldable (GroupByG b) where bifoldMap :: (Monoid m) => (r -> m) -> (v -> m) -> GroupByG b r v -> m bifoldMap mapR mapV GroupByG {..} = foldMap (foldMap $ bifoldMap mapR mapV) _gbgFields data GroupByField (b :: BackendType) r v = GBFGroupKey (Fields (GroupKeyField b)) | GBFAggregate (AggregateFields b v) | GBFNodes (AnnFieldsG b r v) | GBFExp Text deriving (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (GroupKeyField b), Eq (AggregateField b v), Eq (AnnFieldG b r v)) => Eq (GroupByField b r v) deriving stock instance (Backend b, Show (GroupKeyField b), Show (AggregateField b v), Show (AnnFieldG b r v)) => Show (GroupByField b r v) instance (Backend b) => Bifoldable (GroupByField b) where bifoldMap :: (Monoid m) => (r -> m) -> (v -> m) -> GroupByField b r v -> m bifoldMap mapR mapV = \case GBFGroupKey _groupKeyFields -> mempty GBFAggregate aggFields -> foldMap (foldMap $ foldMap mapV) aggFields GBFNodes fields -> foldMap (foldMap $ bifoldMap mapR mapV) fields GBFExp _text -> mempty data GroupKeyField (b :: BackendType) = GKFColumn (Column b) | GKFExp Text deriving stock instance (Backend b) => Eq (GroupKeyField b) deriving stock instance (Backend b) => Show (GroupKeyField b) -- | Types of fields that can be selected in a user query. data SelectionField (b :: BackendType) v = SFCol (Column b) (ColumnType b) | SFComputedField ComputedFieldName (ComputedFieldScalarSelect b v) | SFExp Text deriving (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (FunctionArgumentExp b v), Eq v) => Eq (SelectionField b v) deriving stock instance (Backend b, Show (FunctionArgumentExp b v), Show v) => Show (SelectionField b v) type TableAggregateField b = TableAggregateFieldG b Void (SQLExpression b) type TableAggregateFields b = TableAggregateFieldsG b Void (SQLExpression b) type TableAggregateFieldsG b r v = Fields (TableAggregateFieldG b r v) type SelectionFields b v = Fields (SelectionField b v) type AggregateFields b v = Fields (AggregateField b v) type AnnFieldsG b r v = Fields (AnnFieldG b r v) -- Relay fields data ConnectionField (b :: BackendType) (r :: Type) v = ConnectionTypename Text | ConnectionPageInfo PageInfoFields | ConnectionEdges (EdgeFields b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Eq (EdgeFields b r v) ) => Eq (ConnectionField b r v) deriving stock instance ( Show (EdgeFields b r v) ) => Show (ConnectionField b r v) instance (Backend b) => Bifoldable (ConnectionField b) where bifoldMap f g = \case ConnectionTypename {} -> mempty ConnectionPageInfo {} -> mempty ConnectionEdges edgeFields -> foldMap (foldMap $ bifoldMap f g) edgeFields data PageInfoField = PageInfoTypename Text | PageInfoHasNextPage | PageInfoHasPreviousPage | PageInfoStartCursor | PageInfoEndCursor deriving stock (Show, Eq) data EdgeField (b :: BackendType) (r :: Type) v = EdgeTypename Text | EdgeCursor | EdgeNode (AnnFieldsG b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Eq (AnnFieldsG b r v) ) => Eq (EdgeField b r v) deriving stock instance ( Show (AnnFieldsG b r v) ) => Show (EdgeField b r v) instance (Backend b) => Bifoldable (EdgeField b) where bifoldMap f g = \case EdgeTypename {} -> mempty EdgeCursor -> mempty EdgeNode annFields -> foldMap (foldMap $ bifoldMap f g) annFields type ConnectionFields b r v = Fields (ConnectionField b r v) type PageInfoFields = Fields PageInfoField type EdgeFields b r v = Fields (EdgeField b r v) data AnnColumnField (b :: BackendType) v = AnnColumnField { _acfColumn :: Column b, _acfType :: ColumnType b, -- | If this field is 'True', columns are explicitly casted to @text@ when -- fetched, which avoids an issue that occurs because we don’t currently -- have proper support for array types. See -- https://github.com/hasura/graphql-engine/pull/3198 for more details. _acfAsText :: Bool, -- | Arguments of this column's selection. See 'ScalarSelectionArguments' _acfArguments :: Maybe (ScalarSelectionArguments b), -- | This type is used to determine whether the column -- should be nullified. When the value is `Nothing`, the column value -- will be outputted as computed and when the value is `Just c`, the -- column will be outputted when `c` evaluates to `true` and `null` -- when `c` evaluates to `false`. _acfCaseBoolExpression :: (Maybe (AnnColumnCaseBoolExp b v)) } deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AnnColumnCaseBoolExp b v) ) => Eq (AnnColumnField b v) deriving stock instance ( Backend b, Show (AnnColumnCaseBoolExp b v) ) => Show (AnnColumnField b v) -- Computed field data ComputedFieldScalarSelect (b :: BackendType) v = ComputedFieldScalarSelect { _cfssFunction :: FunctionName b, _cfssArguments :: FunctionArgsExp b v, _cfssType :: ScalarType b, _cfssScalarArguments :: (Maybe (ScalarSelectionArguments b)) } deriving stock instance (Backend b) => Functor (ComputedFieldScalarSelect b) deriving stock instance (Backend b) => Foldable (ComputedFieldScalarSelect b) deriving stock instance (Backend b) => Traversable (ComputedFieldScalarSelect b) deriving stock instance (Backend b, Show v, Show (FunctionArgumentExp b v)) => Show (ComputedFieldScalarSelect b v) deriving stock instance (Backend b, Eq v, Eq (FunctionArgumentExp b v)) => Eq (ComputedFieldScalarSelect b v) data ComputedFieldSelect (b :: BackendType) (r :: Type) v = CFSScalar -- | Type containing info about the computed field (ComputedFieldScalarSelect b v) -- | This type is used to determine if whether the scalar -- computed field should be nullified. When the value is `Nothing`, -- the scalar computed value will be outputted as computed and when the -- value is `Just c`, the scalar computed field will be outputted when -- `c` evaluates to `true` and `null` when `c` evaluates to `false` (Maybe (AnnColumnCaseBoolExp b v)) | CFSTable JsonAggSelect (AnnSimpleSelectG b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AnnColumnCaseBoolExp b v), Eq (AnnSimpleSelectG b r v), Eq (ComputedFieldScalarSelect b v) ) => Eq (ComputedFieldSelect b r v) deriving stock instance ( Backend b, Show (AnnColumnCaseBoolExp b v), Show (AnnSimpleSelectG b r v), Show (ComputedFieldScalarSelect b v) ) => Show (ComputedFieldSelect b r v) instance (Backend b) => Bifoldable (ComputedFieldSelect b) where bifoldMap f g = \case CFSScalar cfsSelect caseBoolExp -> foldMap g cfsSelect <> foldMap (foldMap $ foldMap g) caseBoolExp CFSTable _ simpleSelect -> bifoldMapAnnSelectG f g simpleSelect -- Local relationship type ArrayRelationSelectG b r v = AnnRelationSelectG b (AnnSimpleSelectG b r v) type ArrayAggregateSelectG b r v = AnnRelationSelectG b (AnnAggregateSelectG b r v) type ArrayConnectionSelect b r v = AnnRelationSelectG b (ConnectionSelect b r v) type ArrayAggregateSelect b = ArrayAggregateSelectG b Void (SQLExpression b) data AnnObjectSelectG (b :: BackendType) (r :: Type) v = AnnObjectSelectG { _aosFields :: AnnFieldsG b r v, _aosTarget :: SelectFromG b v, _aosTargetFilter :: (AnnBoolExp b v) } deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (SelectFromG b v), Eq (AnnBoolExp b v), Eq (AnnFieldsG b r v) ) => Eq (AnnObjectSelectG b r v) deriving stock instance ( Backend b, Show (SelectFromG b v), Show (AnnBoolExp b v), Show (AnnFieldsG b r v) ) => Show (AnnObjectSelectG b r v) instance (Backend b) => Bifoldable (AnnObjectSelectG b) where bifoldMap f g AnnObjectSelectG {..} = foldMap (foldMap $ bifoldMap f g) _aosFields <> foldMap (foldMap g) _aosTargetFilter type AnnObjectSelect b r = AnnObjectSelectG b r (SQLExpression b) type ObjectRelationSelectG b r v = AnnRelationSelectG b (AnnObjectSelectG b r v) type ObjectRelationSelect b = ObjectRelationSelectG b Void (SQLExpression b) data ArraySelectG (b :: BackendType) (r :: Type) v = ASSimple (ArrayRelationSelectG b r v) | ASAggregate (ArrayAggregateSelectG b r v) | ASConnection (ArrayConnectionSelect b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Eq (ArrayRelationSelectG b r v), Eq (ArrayAggregateSelectG b r v), Eq (ArrayConnectionSelect b r v) ) => Eq (ArraySelectG b r v) deriving stock instance ( Show (ArrayRelationSelectG b r v), Show (ArrayAggregateSelectG b r v), Show (ArrayConnectionSelect b r v) ) => Show (ArraySelectG b r v) instance (Backend b) => Bifoldable (ArraySelectG b) where bifoldMap f g = \case ASSimple arrayRelationSelect -> foldMap (bifoldMapAnnSelectG f g) arrayRelationSelect ASAggregate arrayAggregateSelect -> foldMap (bifoldMapAnnSelectG f g) arrayAggregateSelect ASConnection arrayConnectionSelect -> foldMap (bifoldMap f g) arrayConnectionSelect type ArraySelect b = ArraySelectG b Void (SQLExpression b) type ArraySelectFieldsG b r v = Fields (ArraySelectG b r v) -- | Captures the selection set of a remote source relationship. data SourceRelationshipSelection (b :: BackendType) (r :: Type) (vf :: BackendType -> Type) = SourceRelationshipObject (AnnObjectSelectG b r (vf b)) | SourceRelationshipArray (AnnSimpleSelectG b r (vf b)) | SourceRelationshipArrayAggregate (AnnAggregateSelectG b r (vf b)) deriving stock instance ( Backend b, Eq (AnnAggregateSelectG b r (vf b)), Eq (AnnObjectSelectG b r (vf b)), Eq (AnnSimpleSelectG b r (vf b)) ) => Eq (SourceRelationshipSelection b r vf) deriving stock instance ( Backend b, Show (AnnAggregateSelectG b r (vf b)), Show (AnnObjectSelectG b r (vf b)), Show (AnnSimpleSelectG b r (vf b)) ) => Show (SourceRelationshipSelection b r vf) -- | A relationship to a remote source. 'vf' (could use a better name) is -- analogous to 'v' in other IR types such as 'AnnFieldG'. vf's kind is -- (BackendType -> Type) instead of v's 'Type' so that 'v' of 'AnnFieldG' can -- be specific to the backend that it captures ('b' of an AnnFieldG changes as -- we walk down the IR branches which capture relationships to other databases) data RemoteSourceSelect (r :: Type) (vf :: BackendType -> Type) (tgt :: BackendType) = RemoteSourceSelect { _rssName :: SourceName, _rssConfig :: SourceConfig tgt, _rssSelection :: SourceRelationshipSelection tgt r vf, -- | Additional information about the source's join columns: -- (ScalarType tgt) so that the remote can interpret the join values coming -- from src -- (Column tgt) so that an appropriate join condition / IN clause can be built -- by the remote _rssJoinMapping :: (HashMap.HashMap FieldName (ScalarType tgt, Column tgt)), _rssStringifyNums :: StringifyNumbers } deriving stock instance ( Backend tgt, Eq (SourceRelationshipSelection tgt r vf) ) => Eq (RemoteSourceSelect r vf tgt) deriving stock instance ( Backend tgt, Show (SourceRelationshipSelection tgt r vf), Show (SourceConfig tgt) ) => Show (RemoteSourceSelect r vf tgt) -- Nested objects data AnnNestedObjectSelectG (b :: BackendType) (r :: Type) v = AnnNestedObjectSelectG { _anosSupportsNestedObjects :: XNestedObjects b, _anosColumn :: Column b, _anosFields :: AnnFieldsG b r v } deriving stock (Functor, Foldable, Traversable) deriving stock instance ( Backend b, Eq (AnnFieldsG b r v) ) => Eq (AnnNestedObjectSelectG b r v) deriving stock instance ( Backend b, Show (AnnFieldsG b r v) ) => Show (AnnNestedObjectSelectG b r v) instance (Backend b) => Bifoldable (AnnNestedObjectSelectG b) where bifoldMap f g AnnNestedObjectSelectG {..} = foldMap (foldMap $ bifoldMap f g) _anosFields type AnnNestedObjectSelect b r = AnnNestedObjectSelectG b r (SQLExpression b) -- Nested arrays data AnnNestedArraySelectG (b :: BackendType) (r :: Type) v = ANASSimple (AnnFieldG b r v) | ANASAggregate (AnnAggregateSelectG b r v) deriving stock (Functor, Foldable, Traversable) deriving stock instance (Backend b, Eq (AnnFieldG b r v), Eq (AnnAggregateSelectG b r v)) => Eq (AnnNestedArraySelectG b r v) deriving stock instance (Backend b, Show (AnnFieldG b r v), Show (AnnAggregateSelectG b r v)) => Show (AnnNestedArraySelectG b r v) instance (Backend b) => Bifoldable (AnnNestedArraySelectG b) where bifoldMap f g = \case ANASSimple field -> bifoldMap f g field ANASAggregate agg -> bifoldMapAnnSelectG f g agg type AnnNestedArraySelect b r = AnnNestedArraySelectG b r (SQLExpression b) -- | If argument positional index is less than or equal to length of -- 'positional' arguments then insert the value in 'positional' arguments else -- insert the value with argument name in 'named' arguments insertFunctionArg :: FunctionArgName -> Int -> a -> FunctionArgsExpG a -> FunctionArgsExpG a insertFunctionArg argName idx value (FunctionArgsExp positional named) = if (idx + 1) <= length positional then FunctionArgsExp (insertAt idx value positional) named else FunctionArgsExp positional $ HashMap.insert (getFuncArgNameTxt argName) value named where insertAt i a = toList . Seq.insertAt i a . Seq.fromList -- | The "distinct" input field inside "count" aggregate field -- -- count ( -- distinct: Boolean -- ): Int data CountDistinct = SelectCountDistinct | SelectCountNonDistinct