{-# LANGUAGE Arrows #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Hasura.GraphQL.Schema ( buildGQLContext ) where import Hasura.Prelude import qualified Data.Aeson as J import qualified Data.HashMap.Strict as Map import qualified Data.HashMap.Strict.InsOrd as OMap import qualified Data.HashSet as Set import qualified Language.GraphQL.Draft.Syntax as G import Control.Arrow.Extended import Control.Lens.Extended import Control.Monad.Unique import Data.Has import Data.List.Extended (duplicates) import qualified Hasura.Backends.Postgres.SQL.Types as PG import qualified Hasura.GraphQL.Parser as P import qualified Hasura.GraphQL.Schema.Postgres as PGS import Data.Text.Extended import Hasura.GraphQL.Context import Hasura.GraphQL.Execute.Types import Hasura.GraphQL.Parser (Kind (..), Parser, Schema (..), UnpreparedValue (..)) import Hasura.GraphQL.Parser.Class import Hasura.GraphQL.Parser.Internal.Parser (FieldParser (..)) import Hasura.GraphQL.Schema.Action import Hasura.GraphQL.Schema.Backend import Hasura.GraphQL.Schema.Common import Hasura.GraphQL.Schema.Introspect import Hasura.GraphQL.Schema.Mutation import Hasura.GraphQL.Schema.Select import Hasura.GraphQL.Schema.Table import Hasura.RQL.DDL.Schema.Cache.Common import Hasura.RQL.Types import Hasura.Session -- Mapping from backend to schema. -- Those instances are orphan by design: generic parsers must be written with the knowledge of the -- BackendSchema typeclass, and the backend-specific parsers that we specify here do in turn rely on -- those generic parsers. To avoid a include loop, we split the definition of the typeclass and of -- its instance. instance BackendSchema 'Postgres where columnParser = PGS.columnParser jsonPathArg = PGS.jsonPathArg getTableGQLName = PGS.getTableGQLName orderByOperators = PGS.orderByOperators comparisonExps = PGS.comparisonExps parseScalarValue = parsePGScalarValue offsetParser = PGS.offsetParser mkCountType = PGS.mkCountType aggregateOrderByCountType = PG.PGInteger computedField = computedFieldPG node = nodePG -- | Whether the request is sent with `x-hasura-use-backend-only-permissions` set to `true`. data Scenario = Backend | Frontend deriving (Enum, Show, Eq) buildGQLContext :: forall arr m . ( ArrowChoice arr , ArrowWriter (Seq InconsistentMetadata) arr , ArrowKleisli m arr , MonadError QErr m , MonadIO m , MonadUnique m , HasSQLGenCtx m ) => ( GraphQLQueryType , TableCache 'Postgres , FunctionCache , HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject) , ActionCache , NonObjectTypeMap ) `arr` ( HashMap RoleName (RoleContext GQLContext) , GQLContext ) buildGQLContext = proc (queryType, allTables, allFunctions, allRemoteSchemas, allActions, nonObjectCustomTypes) -> do SQLGenCtx{ stringifyNum } <- bindA -< askSQLGenCtx let allRoles = Set.insert adminRoleName $ (allTables ^.. folded.tiRolePermInfoMap.to Map.keys.folded) <> (allActionInfos ^.. folded.aiPermissions.to Map.keys.folded) allActionInfos = Map.elems allActions queryRemotesMap = fmap (map fDefinition . piQuery . rscParsed . fst) allRemoteSchemas queryContext = QueryContext stringifyNum queryType queryRemotesMap -- build the admin DB-only context so that we can check against name clashes with remotes -- TODO: Is there a better way to check for conflicts without actually building the admin schema? adminHasuraDBContext <- bindA -< buildFullestDBSchema queryContext allTables allFunctions allActionInfos nonObjectCustomTypes -- TODO factor out the common function; throw500 in both cases: queryFieldNames :: [G.Name] <- bindA -< case P.discardNullability $ P.parserType $ fst adminHasuraDBContext of -- It really ought to be this case; anything else is a programming error. P.TNamed (P.Definition _ _ _ (P.TIObject (P.ObjectInfo rootFields _interfaces))) -> pure $ fmap P.dName rootFields _ -> throw500 "We encountered an root query of unexpected GraphQL type. It should be an object type." let mutationFieldNames :: [G.Name] mutationFieldNames = case P.discardNullability . P.parserType <$> snd adminHasuraDBContext of Just (P.TNamed def) -> case P.dInfo def of -- It really ought to be this case; anything else is a programming error. P.TIObject (P.ObjectInfo rootFields _interfaces) -> fmap P.dName rootFields _ -> [] _ -> [] -- This block of code checks that there are no conflicting root field names between remotes. remotes <- remoteSchemaFields -< (queryFieldNames, mutationFieldNames, allRemoteSchemas) let queryRemotes = concatMap (piQuery . snd) remotes mutationRemotes = concatMap (concat . piMutation . snd) remotes roleContexts <- bindA -< ( Set.toMap allRoles & Map.traverseWithKey \roleName () -> case queryType of QueryHasura -> buildRoleContext queryContext allTables allFunctions allActionInfos nonObjectCustomTypes queryRemotes mutationRemotes roleName QueryRelay -> buildRelayRoleContext queryContext allTables allFunctions allActionInfos nonObjectCustomTypes mutationRemotes roleName ) unauthenticated <- bindA -< unauthenticatedContext queryRemotes mutationRemotes returnA -< (roleContexts, unauthenticated) runMonadSchema :: (Monad m) => RoleName -> QueryContext -> Map.HashMap PG.QualifiedTable (TableInfo 'Postgres) -> P.SchemaT (P.ParseT Identity) (ReaderT (RoleName, Map.HashMap PG.QualifiedTable (TableInfo 'Postgres), QueryContext) m) a -> m a runMonadSchema roleName queryContext tableCache m = flip runReaderT (roleName, tableCache, queryContext) $ P.runSchemaT m -- TODO: Integrate relay schema buildRoleContext :: (MonadError QErr m, MonadIO m, MonadUnique m) => QueryContext -> TableCache 'Postgres -> FunctionCache -> [ActionInfo 'Postgres] -> NonObjectTypeMap -> [P.FieldParser (P.ParseT Identity) RemoteField] -> [P.FieldParser (P.ParseT Identity) RemoteField] -> RoleName -> m (RoleContext GQLContext) buildRoleContext queryContext (takeValidTables -> allTables) (takeValidFunctions -> allFunctions) allActionInfos nonObjectCustomTypes queryRemotes mutationRemotes roleName = runMonadSchema roleName queryContext allTables $ do mutationParserFrontend <- buildPGMutationFields Frontend tableNames >>= buildMutationParser mutationRemotes allActionInfos nonObjectCustomTypes allFunctions mutationParserBackend <- buildPGMutationFields Backend tableNames >>= buildMutationParser mutationRemotes allActionInfos nonObjectCustomTypes allFunctions queryPGFields <- buildPostgresQueryFields tableNames allFunctions subscriptionParser <- buildSubscriptionParser queryPGFields allActionInfos queryParserFrontend <- buildQueryParser queryPGFields queryRemotes allActionInfos nonObjectCustomTypes mutationParserFrontend subscriptionParser queryParserBackend <- buildQueryParser queryPGFields queryRemotes allActionInfos nonObjectCustomTypes mutationParserBackend subscriptionParser let frontendContext = GQLContext (finalizeParser queryParserFrontend) (finalizeParser <$> mutationParserFrontend) let backendContext = GQLContext (finalizeParser queryParserBackend) (finalizeParser <$> mutationParserBackend) pure $ RoleContext frontendContext $ Just backendContext where tableNames = Map.keysSet allTables -- TODO why do we do these validations at this point? What does it mean to track -- a function but not add it to the schema...? -- Auke: -- I believe the intention is simply to allow the console to do postgres data management -- Karthikeyan: Yes, this is correct. We allowed this pre PDV but somehow -- got removed in PDV. OTOH, I’m not sure how prevalent this feature -- actually is takeValidTables :: TableCache 'Postgres -> TableCache 'Postgres takeValidTables = Map.filterWithKey graphQLTableFilter . Map.filter tableFilter where tableFilter = not . isSystemDefined . _tciSystemDefined . _tiCoreInfo graphQLTableFilter tableName tableInfo = -- either the table name should be GraphQL compliant -- or it should have a GraphQL custom name set with it PG.isGraphQLCompliantTableName tableName || (isJust . _tcCustomName . _tciCustomConfig . _tiCoreInfo $ tableInfo) -- TODO and what about graphql-compliant function names here too? takeValidFunctions :: FunctionCache -> [FunctionInfo] takeValidFunctions = Map.elems . Map.filter functionFilter where functionFilter = not . isSystemDefined . fiSystemDefined takeExposedAs :: FunctionExposedAs -> [FunctionInfo] -> [FunctionInfo] takeExposedAs x = filter ((== x) . fiExposedAs) buildFullestDBSchema :: (MonadError QErr m, MonadIO m, MonadUnique m) => QueryContext -> TableCache 'Postgres -> FunctionCache -> [ActionInfo 'Postgres] -> NonObjectTypeMap -> m ( Parser 'Output (P.ParseT Identity) (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres))) , Maybe (Parser 'Output (P.ParseT Identity) (OMap.InsOrdHashMap G.Name (MutationRootField (UnpreparedValue 'Postgres)))) ) buildFullestDBSchema queryContext (takeValidTables -> allTables) (takeValidFunctions -> allFunctions) allActionInfos nonObjectCustomTypes = do runMonadSchema adminRoleName queryContext allTables $ do mutationParserFrontend <- buildPGMutationFields Frontend tableNames >>= -- NOTE: we omit remotes here on purpose since we're trying to check name -- clashes with remotes: buildMutationParser mempty allActionInfos nonObjectCustomTypes allFunctions queryPGFields <- buildPostgresQueryFields tableNames allFunctions subscriptionParser <- buildSubscriptionParser queryPGFields allActionInfos queryParserFrontend <- buildQueryParser queryPGFields mempty allActionInfos nonObjectCustomTypes mutationParserFrontend subscriptionParser pure (queryParserFrontend, mutationParserFrontend) where tableNames = Map.keysSet allTables buildRelayRoleContext :: (MonadError QErr m, MonadIO m, MonadUnique m) => QueryContext -> TableCache 'Postgres -> FunctionCache -> [ActionInfo 'Postgres] -> NonObjectTypeMap -> [P.FieldParser (P.ParseT Identity) RemoteField] -> RoleName -> m (RoleContext GQLContext) buildRelayRoleContext queryContext (takeValidTables -> allTables) (takeValidFunctions -> allFunctions) allActionInfos nonObjectCustomTypes mutationRemotes roleName = runMonadSchema roleName queryContext allTables $ do mutationParserFrontend <- buildPGMutationFields Frontend tableNames >>= buildMutationParser mutationRemotes allActionInfos nonObjectCustomTypes allFunctions mutationParserBackend <- buildPGMutationFields Backend tableNames >>= buildMutationParser mutationRemotes allActionInfos nonObjectCustomTypes allFunctions queryPGFields <- buildRelayPostgresQueryFields tableNames allFunctions subscriptionParser <- P.safeSelectionSet subscriptionRoot Nothing queryPGFields <&> fmap (fmap (P.handleTypename (RFRaw . J.String. G.unName))) queryParserFrontend <- queryWithIntrospectionHelper queryPGFields mutationParserFrontend subscriptionParser queryParserBackend <- queryWithIntrospectionHelper queryPGFields mutationParserBackend subscriptionParser let frontendContext = GQLContext (finalizeParser queryParserFrontend) (finalizeParser <$> mutationParserFrontend) let backendContext = GQLContext (finalizeParser queryParserBackend) (finalizeParser <$> mutationParserBackend) pure $ RoleContext frontendContext $ Just backendContext where tableNames = Map.keysSet allTables unauthenticatedContext :: forall m . ( MonadError QErr m , MonadIO m , MonadUnique m ) => [P.FieldParser (P.ParseT Identity) RemoteField] -> [P.FieldParser (P.ParseT Identity) RemoteField] -> m GQLContext unauthenticatedContext queryRemotes mutationRemotes = P.runSchemaT $ do let queryFields = fmap (fmap RFRemote) queryRemotes mutationParser <- if null mutationRemotes then pure Nothing else P.safeSelectionSet mutationRoot Nothing (fmap (fmap RFRemote) mutationRemotes) <&> Just . fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName))) subscriptionParser <- P.safeSelectionSet subscriptionRoot Nothing [] <&> fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName))) queryParser <- queryWithIntrospectionHelper queryFields mutationParser subscriptionParser pure $ GQLContext (finalizeParser queryParser) (finalizeParser <$> mutationParser) finalizeParser :: Parser 'Output (P.ParseT Identity) a -> ParserFn a finalizeParser parser = runIdentity . P.runParseT . P.runParser parser -- checks that there are no conflicting root field names between remotes and -- hasura fields remoteSchemaFields :: forall arr m . ( ArrowChoice arr , ArrowWriter (Seq InconsistentMetadata) arr , ArrowKleisli m arr , MonadError QErr m ) => ([G.Name], [G.Name], HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject)) `arr` [( RemoteSchemaName , ParsedIntrospection)] remoteSchemaFields = proc (queryFieldNames, mutationFieldNames, allRemoteSchemas) -> do (| foldlA' (\okSchemas (newSchemaName, (newSchemaContext, newMetadataObject)) -> do checkedDuplicates <- (| withRecordInconsistency (do let (queryOld, mutationOld) = unzip $ fmap ((\case ParsedIntrospection q m _ -> (q,m)) . snd) okSchemas let ParsedIntrospection queryNew mutationNew _subscriptionNew = rscParsed newSchemaContext -- Check for conflicts between remotes bindErrorA -< for_ (duplicates (fmap (P.getName . fDefinition) (queryNew ++ concat queryOld))) $ \name -> throw400 Unexpected $ "Duplicate remote field " <> squote name -- Check for conflicts between this remote and the tables bindErrorA -< for_ (duplicates (fmap (P.getName . fDefinition) queryNew ++ queryFieldNames)) $ \name -> throw400 RemoteSchemaConflicts $ "Field cannot be overwritten by remote field " <> squote name -- Ditto, but for mutations case mutationNew of Nothing -> returnA -< () Just ms -> do bindErrorA -< for_ (duplicates (fmap (P.getName . fDefinition) (ms ++ concat (catMaybes mutationOld)))) $ \name -> throw400 Unexpected $ "Duplicate remote field " <> squote name -- Ditto, but for mutations bindErrorA -< for_ (duplicates (fmap (P.getName . fDefinition) ms ++ mutationFieldNames)) $ \name -> throw400 Unexpected $ "Field cannot be overwritten by remote field " <> squote name -- No need to check subscriptions as these are not supported returnA -< () ) |) newMetadataObject case checkedDuplicates of Nothing -> returnA -< okSchemas Just _ -> returnA -< (newSchemaName, rscParsed newSchemaContext):okSchemas ) |) [] (Map.toList allRemoteSchemas) buildPostgresQueryFields :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => HashSet PG.QualifiedTable -> [FunctionInfo] -> m [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] buildPostgresQueryFields allTables (takeExposedAs FEAQuery -> queryFunctions) = do tableSelectExpParsers <- for (toList allTables) \table -> do selectPerms <- tableSelectPermissions table customRootFields <- _tcCustomRootFields . _tciCustomConfig . _tiCoreInfo <$> askTableInfo @'Postgres table for selectPerms \perms -> do tableGQLName <- getTableGQLName @'Postgres table let fieldsDesc = G.Description $ "fetch data from the table: " <>> table aggName = tableGQLName <> $$(G.litName "_aggregate") aggDesc = G.Description $ "fetch aggregated fields from the table: " <>> table pkName = tableGQLName <> $$(G.litName "_by_pk") pkDesc = G.Description $ "fetch data from the table: " <> table <<> " using primary key columns" catMaybes <$> sequenceA [ requiredFieldParser (RFDB . QDBSimple) $ selectTable table (fromMaybe tableGQLName $ _tcrfSelect customRootFields) (Just fieldsDesc) perms , mapMaybeFieldParser (RFDB . QDBPrimaryKey) $ selectTableByPk table (fromMaybe pkName $ _tcrfSelectByPk customRootFields) (Just pkDesc) perms , mapMaybeFieldParser (RFDB . QDBAggregation) $ selectTableAggregate table (fromMaybe aggName $ _tcrfSelectAggregate customRootFields) (Just aggDesc) perms ] functionSelectExpParsers <- for queryFunctions \function -> do let targetTable = fiReturnType function functionName = fiName function selectPerms <- tableSelectPermissions targetTable for selectPerms \perms -> do displayName <- PG.qualifiedObjectToName functionName let functionDesc = G.Description $ "execute function " <> functionName <<> " which returns " <>> targetTable aggName = displayName <> $$(G.litName "_aggregate") aggDesc = G.Description $ "execute function " <> functionName <<> " and query aggregates on result of table type " <>> targetTable catMaybes <$> sequenceA [ requiredFieldParser (RFDB . QDBSimple) $ selectFunction function displayName (Just functionDesc) perms , mapMaybeFieldParser (RFDB . QDBAggregation) $ selectFunctionAggregate function aggName (Just aggDesc) perms ] pure $ (concat . catMaybes) (tableSelectExpParsers <> functionSelectExpParsers) where mapMaybeFieldParser :: (a -> b) -> m (Maybe (P.FieldParser n a)) -> m (Maybe (P.FieldParser n b)) mapMaybeFieldParser f = fmap $ fmap $ fmap f requiredFieldParser :: (Functor n, Functor m)=> (a -> b) -> m (P.FieldParser n a) -> m (Maybe (P.FieldParser n b)) requiredFieldParser f = fmap $ Just . fmap f -- | Includes remote schema fields and actions buildActionQueryFields :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => [ActionInfo 'Postgres] -> NonObjectTypeMap -> m [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] buildActionQueryFields allActions nonObjectCustomTypes = do actionParsers <- for allActions $ \actionInfo -> case _adType (_aiDefinition actionInfo) of ActionMutation ActionSynchronous -> pure Nothing ActionMutation ActionAsynchronous -> fmap (fmap (RFAction . AQAsync)) <$> actionAsyncQuery actionInfo ActionQuery -> fmap (fmap (RFAction . AQQuery)) <$> actionExecute nonObjectCustomTypes actionInfo pure $ catMaybes actionParsers buildActionSubscriptionFields :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => [ActionInfo 'Postgres] -> m [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] buildActionSubscriptionFields allActions = do actionParsers <- for allActions $ \actionInfo -> case _adType (_aiDefinition actionInfo) of ActionMutation ActionAsynchronous -> fmap (fmap (RFAction . AQAsync)) <$> actionAsyncQuery actionInfo ActionMutation ActionSynchronous -> pure Nothing ActionQuery -> pure Nothing pure $ catMaybes actionParsers buildRelayPostgresQueryFields :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => HashSet PG.QualifiedTable -> [FunctionInfo] -> m [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] buildRelayPostgresQueryFields allTables (takeExposedAs FEAQuery -> queryFunctions) = do tableConnectionFields <- for (toList allTables) $ \table -> runMaybeT do pkeyColumns <- MaybeT $ (^? tiCoreInfo.tciPrimaryKey._Just.pkColumns) <$> askTableInfo table selectPerms <- MaybeT $ tableSelectPermissions table tableGQLName <- getTableGQLName @'Postgres table let fieldName = tableGQLName <> $$(G.litName "_connection") fieldDesc = Just $ G.Description $ "fetch data from the table: " <>> table lift $ selectTableConnection table fieldName fieldDesc pkeyColumns selectPerms functionConnectionFields <- for queryFunctions $ \function -> runMaybeT do let returnTable = fiReturnType function functionName = fiName function pkeyColumns <- MaybeT $ (^? tiCoreInfo.tciPrimaryKey._Just.pkColumns) <$> askTableInfo returnTable selectPerms <- MaybeT $ tableSelectPermissions returnTable displayName <- PG.qualifiedObjectToName functionName let fieldName = displayName <> $$(G.litName "_connection") fieldDesc = Just $ G.Description $ "execute function " <> functionName <<> " which returns " <>> returnTable lift $ selectFunctionConnection function fieldName fieldDesc pkeyColumns selectPerms nodeField_ <- fmap (RFDB . QDBPrimaryKey) <$> nodeField pure $ (:) nodeField_ $ map (fmap (RFDB . QDBConnection)) $ catMaybes $ tableConnectionFields <> functionConnectionFields queryRootFromFields :: forall n m . (MonadError QErr m, MonadParse n) => [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] -> m (Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres)))) queryRootFromFields fps = P.safeSelectionSet queryRoot Nothing fps <&> fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName))) emptyIntrospection :: forall m n . (MonadSchema n m, MonadError QErr m) => m [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] emptyIntrospection = do emptyQueryP <- queryRootFromFields @n [] introspectionTypes <- collectTypes (P.parserType emptyQueryP) let introspectionSchema = Schema { sDescription = Nothing , sTypes = introspectionTypes , sQueryType = P.parserType emptyQueryP , sMutationType = Nothing , sSubscriptionType = Nothing , sDirectives = mempty } return $ fmap (fmap RFRaw) [schema introspectionSchema, typeIntrospection introspectionSchema] collectTypes :: forall m a . (MonadError QErr m, P.HasTypeDefinitions a) => a -> m (HashMap G.Name (P.Definition P.SomeTypeInfo)) collectTypes x = case P.collectTypeDefinitions x of Left (P.ConflictingDefinitions (type1, origin1) (_type2, origins)) -> throw500 $ "Found conflicting definitions for " <> P.getName type1 <<> ". The definition at " <> origin1 <<> " differs from the the definition at " <>> commaSeparated origins Right tps -> pure tps queryWithIntrospectionHelper :: (MonadSchema n m, MonadError QErr m) => [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] -> Maybe (Parser 'Output n (OMap.InsOrdHashMap G.Name (MutationRootField (UnpreparedValue 'Postgres)))) -> Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres))) -> m (Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres)))) queryWithIntrospectionHelper basicQueryFP mutationP subscriptionP = do basicQueryP <- queryRootFromFields basicQueryFP emptyIntro <- emptyIntrospection allBasicTypes <- collectTypes $ [ P.parserType basicQueryP , P.parserType subscriptionP ] ++ maybeToList (P.parserType <$> mutationP) allIntrospectionTypes <- collectTypes . P.parserType =<< queryRootFromFields emptyIntro let allTypes = Map.unions [ allBasicTypes , Map.filterWithKey (\name _info -> name /= queryRoot) allIntrospectionTypes ] partialSchema = Schema { sDescription = Nothing , sTypes = allTypes , sQueryType = P.parserType basicQueryP , sMutationType = P.parserType <$> mutationP , sSubscriptionType = Just $ P.parserType subscriptionP , sDirectives = defaultDirectives } let partialQueryFields = basicQueryFP ++ (fmap RFRaw <$> [schema partialSchema, typeIntrospection partialSchema]) P.safeSelectionSet queryRoot Nothing partialQueryFields <&> fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName))) -- | Prepare the parser for query-type GraphQL requests, but with introspection -- for queries, mutations and subscriptions built in. buildQueryParser :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] -> [P.FieldParser n RemoteField] -> [ActionInfo 'Postgres] -> NonObjectTypeMap -> Maybe (Parser 'Output n (OMap.InsOrdHashMap G.Name (MutationRootField (UnpreparedValue 'Postgres)))) -> Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres))) -> m (Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres)))) buildQueryParser pgQueryFields remoteFields allActions nonObjectCustomTypes mutationParser subscriptionParser = do actionQueryFields <- buildActionQueryFields allActions nonObjectCustomTypes let allQueryFields = pgQueryFields <> actionQueryFields <> map (fmap RFRemote) remoteFields queryWithIntrospectionHelper allQueryFields mutationParser subscriptionParser -- | Prepare the parser for subscriptions. Every postgres query field is -- exposed as a subscription along with fields to get the status of -- asynchronous actions. buildSubscriptionParser :: forall m n r . ( MonadSchema n m , MonadTableInfo 'Postgres r m , MonadRole r m , Has QueryContext r ) => [P.FieldParser n (QueryRootField (UnpreparedValue 'Postgres))] -> [ActionInfo 'Postgres] -> m (Parser 'Output n (OMap.InsOrdHashMap G.Name (QueryRootField (UnpreparedValue 'Postgres)))) buildSubscriptionParser pgQueryFields allActions = do actionSubscriptionFields <- buildActionSubscriptionFields allActions let subscriptionFields = pgQueryFields <> actionSubscriptionFields P.safeSelectionSet subscriptionRoot Nothing subscriptionFields <&> fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName))) buildPGMutationFields :: forall m n r . (MonadSchema n m, MonadTableInfo 'Postgres r m, MonadRole r m, Has QueryContext r) => Scenario -> HashSet PG.QualifiedTable -> m [P.FieldParser n (MutationRootField (UnpreparedValue 'Postgres))] buildPGMutationFields scenario allTables = do concat . catMaybes <$> for (toList allTables) \table -> do tableCoreInfo <- _tiCoreInfo <$> askTableInfo @'Postgres table tableGQLName <- getTableGQLName @'Postgres table tablePerms <- tablePermissions table for tablePerms \RolePermInfo{..} -> do let customRootFields = _tcCustomRootFields $ _tciCustomConfig tableCoreInfo viewInfo = _tciViewInfo tableCoreInfo -- If we're in a frontend scenario, we should not include backend_only inserts let scenarioInsertPermissionM = do insertPermission <- _permIns if scenario == Frontend && ipiBackendOnly insertPermission then Nothing else return insertPermission inserts <- fmap join $ whenMaybe (isMutable viIsInsertable viewInfo) $ for scenarioInsertPermissionM \insertPerms -> do let insertName = $$(G.litName "insert_") <> tableGQLName insertDesc = G.Description $ "insert data into the table: " <>> table insertOneName = $$(G.litName "insert_") <> tableGQLName <> $$(G.litName "_one") insertOneDesc = G.Description $ "insert a single row into the table: " <>> table insert <- insertIntoTable table (fromMaybe insertName $ _tcrfInsert customRootFields) (Just insertDesc) insertPerms _permSel _permUpd -- select permissions are required for InsertOne: the -- selection set is the same as a select on that table, and it -- therefore can't be populated if the user doesn't have -- select permissions insertOne <- for _permSel \selPerms -> insertOneIntoTable table (fromMaybe insertOneName $ _tcrfInsertOne customRootFields) (Just insertOneDesc) insertPerms selPerms _permUpd pure $ fmap (RFDB . MDBInsert) <$> insert : maybeToList insertOne updates <- fmap join $ whenMaybe (isMutable viIsUpdatable viewInfo) $ for _permUpd \updatePerms -> do let updateName = $$(G.litName "update_") <> tableGQLName updateDesc = G.Description $ "update data of the table: " <>> table updateByPkName = $$(G.litName "update_") <> tableGQLName <> $$(G.litName "_by_pk") updateByPkDesc = G.Description $ "update single row of the table: " <>> table update <- updateTable table (fromMaybe updateName $ _tcrfUpdate customRootFields) (Just updateDesc) updatePerms _permSel -- likewise; furthermore, primary keys can only be tested in -- the `where` clause if the user has select permissions for -- them, which at the very least requires select permissions updateByPk <- join <$> for _permSel (updateTableByPk table (fromMaybe updateByPkName $ _tcrfUpdateByPk customRootFields) (Just updateByPkDesc) updatePerms) pure $ fmap (RFDB . MDBUpdate) <$> catMaybes [update, updateByPk] -- when the table/view is mutable and there exists a delete permission deletes <- fmap join $ whenMaybe (isMutable viIsDeletable viewInfo) $ for _permDel $ \deletePermission -> do delete <- buildDeleteField table tableGQLName (_tcrfDelete customRootFields) deletePermission _permSel -- select permission is needed for deleteByPk field so that a return type -- for the field can be generated deleteByPk <- fmap join $ for _permSel $ buildDeleteByPkField table tableGQLName (_tcrfDeleteByPk customRootFields) deletePermission pure $ fmap (RFDB . MDBDelete) <$> delete : maybeToList deleteByPk pure $ concat $ catMaybes [inserts, updates, deletes] where buildDeleteField table tableGQLName customName deletePermission selectPermission = do let deleteName = $$(G.litName "delete_") <> tableGQLName deleteDesc = G.Description $ "delete data from the table: " <>> table deleteFromTable table (fromMaybe deleteName customName) (Just deleteDesc) deletePermission selectPermission buildDeleteByPkField table tableGQLName customName deletePermission = do let fieldName = $$(G.litName "delete_") <> tableGQLName <> $$(G.litName "_by_pk") fieldDescription = G.Description $ "delete single row from the table: " <>> table deleteFromTableByPk table (fromMaybe fieldName customName) (Just fieldDescription) deletePermission subscriptionRoot :: G.Name subscriptionRoot = $$(G.litName "subscription_root") mutationRoot :: G.Name mutationRoot = $$(G.litName "mutation_root") queryRoot :: G.Name queryRoot = $$(G.litName "query_root") buildMutationParser :: forall m n r . (MonadSchema n m, MonadTableInfo 'Postgres r m, MonadRole r m, Has QueryContext r) => [P.FieldParser n RemoteField] -> [ActionInfo 'Postgres] -> NonObjectTypeMap -> [FunctionInfo] -- ^ all "valid" functions -> [P.FieldParser n (MutationRootField (UnpreparedValue 'Postgres))] -> m (Maybe (Parser 'Output n (OMap.InsOrdHashMap G.Name (MutationRootField (UnpreparedValue 'Postgres))))) buildMutationParser allRemotes allActions nonObjectCustomTypes (takeExposedAs FEAMutation -> mutationFunctions) pgMutationFields = do -- NOTE: this is basically copied from functionSelectExpParsers body functionMutationExpParsers <- for mutationFunctions \function@FunctionInfo{..} -> do selectPerms <- tableSelectPermissions fiReturnType for selectPerms \perms -> do displayName <- PG.qualifiedObjectToName fiName let functionDesc = G.Description $ "execute VOLATILE function " <> fiName <<> " which returns " <>> fiReturnType catMaybes <$> sequenceA [ requiredFieldParser (RFDB . MDBFunction) $ selectFunction function displayName (Just functionDesc) perms -- FWIW: The equivalent of this is possible for mutations; do we want that?: -- , mapMaybeFieldParser (RFDB . QDBAggregation) $ selectFunctionAggregate function aggName (Just aggDesc) perms ] actionParsers <- for allActions $ \actionInfo -> case _adType (_aiDefinition actionInfo) of ActionMutation ActionSynchronous -> fmap (fmap (RFAction . AMSync)) <$> actionExecute nonObjectCustomTypes actionInfo ActionMutation ActionAsynchronous -> fmap (fmap (RFAction . AMAsync)) <$> actionAsyncMutation nonObjectCustomTypes actionInfo ActionQuery -> pure Nothing let mutationFieldsParser = pgMutationFields <> concat (catMaybes functionMutationExpParsers) <> catMaybes actionParsers <> fmap (fmap RFRemote) allRemotes if null mutationFieldsParser then pure Nothing else P.safeSelectionSet mutationRoot (Just $ G.Description "mutation root") mutationFieldsParser <&> Just . fmap (fmap (P.handleTypename (RFRaw . J.String . G.unName)))