{-# LANGUAGE ApplicativeDo #-} {-# LANGUAGE TemplateHaskellQuotes #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | MSSQL Instances Schema -- -- Defines a 'Hasura.GraphQL.Schema.Backend.BackendSchema' type class instance for MSSQL. module Hasura.Backends.MSSQL.Instances.Schema () where import Data.Has import Data.HashMap.Strict qualified as Map import Data.List.NonEmpty qualified as NE import Data.Text.Casing qualified as C import Data.Text.Extended import Database.ODBC.SQLServer qualified as ODBC import Hasura.Backends.MSSQL.Schema.IfMatched import Hasura.Backends.MSSQL.Types.Insert (BackendInsert (..)) import Hasura.Backends.MSSQL.Types.Internal qualified as MSSQL import Hasura.Backends.MSSQL.Types.Update (BackendUpdate (..), UpdateOperator (..)) import Hasura.Base.Error import Hasura.GraphQL.Parser hiding (EnumValueInfo, field) import Hasura.GraphQL.Parser qualified as P import Hasura.GraphQL.Parser.Constants qualified as G import Hasura.GraphQL.Parser.Internal.Parser hiding (field) import Hasura.GraphQL.Schema.Backend import Hasura.GraphQL.Schema.BoolExp import Hasura.GraphQL.Schema.Build qualified as GSB import Hasura.GraphQL.Schema.Common import Hasura.GraphQL.Schema.Select import Hasura.GraphQL.Schema.Table import Hasura.GraphQL.Schema.Update qualified as SU import Hasura.Prelude import Hasura.RQL.IR import Hasura.RQL.IR.Insert qualified as IR import Hasura.RQL.IR.Select qualified as IR import Hasura.RQL.Types.Backend hiding (BackendInsert) import Hasura.RQL.Types.Column import Hasura.RQL.Types.Common import Hasura.RQL.Types.ComputedField import Hasura.RQL.Types.Function import Hasura.RQL.Types.Relationships.Local import Hasura.RQL.Types.SchemaCache import Hasura.RQL.Types.Source import Hasura.RQL.Types.SourceCustomization (NamingCase) import Hasura.RQL.Types.Table import Hasura.SQL.Backend import Language.GraphQL.Draft.Syntax qualified as G ---------------------------------------------------------------- -- * BackendSchema instance instance BackendSchema 'MSSQL where -- top level parsers buildTableQueryFields = GSB.buildTableQueryFields buildTableRelayQueryFields = msBuildTableRelayQueryFields buildTableStreamingSubscriptionFields = GSB.buildTableStreamingSubscriptionFields buildTableInsertMutationFields = GSB.buildTableInsertMutationFields backendInsertParser buildTableDeleteMutationFields = GSB.buildTableDeleteMutationFields buildTableUpdateMutationFields = msBuildTableUpdateMutationFields buildFunctionQueryFields = msBuildFunctionQueryFields buildFunctionRelayQueryFields = msBuildFunctionRelayQueryFields buildFunctionMutationFields = msBuildFunctionMutationFields -- backend extensions relayExtension = Nothing nodesAggExtension = Just () streamSubscriptionExtension = Nothing -- table arguments tableArguments = msTableArgs mkRelationshipParser = msMkRelationshipParser -- individual components columnParser = msColumnParser scalarSelectionArgumentsParser = msScalarSelectionArgumentsParser orderByOperators = msOrderByOperators comparisonExps = msComparisonExps countTypeInput = msCountTypeInput aggregateOrderByCountType = MSSQL.IntegerType computedField = msComputedField node = msNode ---------------------------------------------------------------- -- * Top level parsers msBuildTableRelayQueryFields :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> TableName 'MSSQL -> TableInfo 'MSSQL -> C.GQLNameIdentifier -> NESeq (ColumnInfo 'MSSQL) -> m [a] msBuildTableRelayQueryFields _sourceName _tableName _tableInfo _gqlName _pkeyColumns = pure [] backendInsertParser :: forall m r n. MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> TableInfo 'MSSQL -> m (InputFieldsParser n (BackendInsert (UnpreparedValue 'MSSQL))) backendInsertParser sourceName tableInfo = do ifMatched <- ifMatchedFieldParser sourceName tableInfo let _biIdentityColumns = _tciExtraTableMetadata $ _tiCoreInfo tableInfo pure $ do _biIfMatched <- ifMatched pure $ BackendInsert {..} msBuildTableUpdateMutationFields :: MonadBuildSchema 'MSSQL r m n => Scenario -> SourceInfo 'MSSQL -> TableName 'MSSQL -> TableInfo 'MSSQL -> C.GQLNameIdentifier -> m [FieldParser n (AnnotatedUpdateG 'MSSQL (RemoteRelationshipField UnpreparedValue) (UnpreparedValue 'MSSQL))] msBuildTableUpdateMutationFields scenario sourceName tableName tableInfo gqlName = do fieldParsers <- runMaybeT do updatePerms <- MaybeT $ _permUpd <$> tablePermissions tableInfo let mkBackendUpdate backendUpdateTableInfo = (fmap . fmap) BackendUpdate $ SU.buildUpdateOperators (UpdateSet <$> SU.presetColumns updatePerms) [ UpdateSet <$> SU.setOp, UpdateInc <$> SU.incOp ] backendUpdateTableInfo lift $ GSB.buildTableUpdateMutationFields mkBackendUpdate scenario sourceName tableName tableInfo gqlName pure . fold @Maybe @[_] $ fieldParsers {- NOTE: We currently use 'GSB.buildTableDeleteMutationFields' instead of this. Should we save it? msBuildTableDeleteMutationFields :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> TableName 'MSSQL -> TableInfo 'MSSQL -> G.Name -> DelPermInfo 'MSSQL -> Maybe (SelPermInfo 'MSSQL) -> m [a] msBuildTableDeleteMutationFields _sourceName _tableName _tableInfo _gqlName _delPerns _selPerms = pure [] -} msBuildFunctionQueryFields :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> FunctionName 'MSSQL -> FunctionInfo 'MSSQL -> TableName 'MSSQL -> m [a] msBuildFunctionQueryFields _ _ _ _ = pure [] msBuildFunctionRelayQueryFields :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> FunctionName 'MSSQL -> FunctionInfo 'MSSQL -> TableName 'MSSQL -> NESeq (ColumnInfo 'MSSQL) -> m [a] msBuildFunctionRelayQueryFields _sourceName _functionName _functionInfo _tableName _pkeyColumns = pure [] msBuildFunctionMutationFields :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> FunctionName 'MSSQL -> FunctionInfo 'MSSQL -> TableName 'MSSQL -> m [a] msBuildFunctionMutationFields _ _ _ _ = pure [] ---------------------------------------------------------------- -- * Table arguments msTableArgs :: forall r m n. MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> TableInfo 'MSSQL -> m (InputFieldsParser n (IR.SelectArgsG 'MSSQL (UnpreparedValue 'MSSQL))) msTableArgs sourceName tableInfo = do whereParser <- tableWhereArg sourceName tableInfo orderByParser <- tableOrderByArg sourceName tableInfo pure do whereArg <- whereParser orderByArg <- orderByParser limitArg <- tableLimitArg offsetArg <- tableOffsetArg pure $ IR.SelectArgs { IR._saWhere = whereArg, IR._saOrderBy = orderByArg, IR._saLimit = limitArg, IR._saOffset = offsetArg, -- not supported on MSSQL for now IR._saDistinct = Nothing } msMkRelationshipParser :: forall r m n. MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> RelInfo 'MSSQL -> m (Maybe (InputFieldsParser n (Maybe (IR.AnnotatedInsertField 'MSSQL (UnpreparedValue 'MSSQL))))) msMkRelationshipParser _sourceName _relationshipInfo = do -- When we support nested inserts, we also need to ensure we limit ourselves -- to inserting into tables whch supports inserts: {- import Hasura.GraphQL.Schema.Mutation qualified as GSB runMaybeT $ do let otherTableName = riRTable relationshipInfo otherTableInfo <- lift $ askTableInfo sourceName otherTableName guard (supportsInserts otherTableInfo) -} return Nothing ---------------------------------------------------------------- -- * Individual components msColumnParser :: (MonadSchema n m, MonadError QErr m, MonadReader r m, Has MkTypename r) => ColumnType 'MSSQL -> G.Nullability -> m (Parser 'Both n (ValueWithOrigin (ColumnValue 'MSSQL))) msColumnParser columnType (G.Nullability isNullable) = peelWithOrigin . fmap (ColumnValue columnType) <$> case columnType of -- TODO: the mapping here is not consistent with mkMSSQLScalarTypeName. For -- example, exposing all the float types as a GraphQL Float type is -- incorrect, similarly exposing all the integer types as a GraphQL Int ColumnScalar scalarType -> possiblyNullable scalarType <$> case scalarType of -- text MSSQL.CharType -> pure $ ODBC.TextValue <$> P.string MSSQL.VarcharType -> pure $ ODBC.TextValue <$> P.string MSSQL.WcharType -> pure $ ODBC.TextValue <$> P.string MSSQL.WvarcharType -> pure $ ODBC.TextValue <$> P.string MSSQL.WtextType -> pure $ ODBC.TextValue <$> P.string MSSQL.TextType -> pure $ ODBC.TextValue <$> P.string -- integer MSSQL.IntegerType -> pure $ ODBC.IntValue . fromIntegral <$> P.int MSSQL.SmallintType -> pure $ ODBC.IntValue . fromIntegral <$> P.int MSSQL.BigintType -> pure $ ODBC.IntValue . fromIntegral <$> P.int MSSQL.TinyintType -> pure $ ODBC.IntValue . fromIntegral <$> P.int -- float MSSQL.NumericType -> pure $ ODBC.DoubleValue <$> P.float MSSQL.DecimalType -> pure $ ODBC.DoubleValue <$> P.float MSSQL.FloatType -> pure $ ODBC.DoubleValue <$> P.float MSSQL.RealType -> pure $ ODBC.DoubleValue <$> P.float -- boolean MSSQL.BitType -> pure $ ODBC.BoolValue <$> P.boolean _ -> do name <- MSSQL.mkMSSQLScalarTypeName scalarType let schemaType = P.TNamed P.NonNullable $ P.Definition name Nothing P.TIScalar pure $ Parser { pType = schemaType, pParser = valueToJSON (P.toGraphQLType schemaType) >=> either (parseErrorWith ParseFailed . qeError) pure . (MSSQL.parseScalarValue scalarType) } ColumnEnumReference enumRef@(EnumReference _ enumValues _) -> case nonEmpty (Map.toList enumValues) of Just enumValuesList -> do enumName <- mkEnumTypeName enumRef pure $ possiblyNullable MSSQL.VarcharType $ P.enum enumName Nothing (mkEnumValue <$> enumValuesList) Nothing -> throw400 ValidationFailed "empty enum values" where possiblyNullable _scalarType | isNullable = fmap (fromMaybe ODBC.NullValue) . P.nullable | otherwise = id mkEnumValue :: (EnumValue, EnumValueInfo) -> (P.Definition P.EnumValueInfo, ScalarValue 'MSSQL) mkEnumValue (EnumValue value, EnumValueInfo description) = ( P.Definition value (G.Description <$> description) P.EnumValueInfo, ODBC.TextValue $ G.unName value ) msScalarSelectionArgumentsParser :: MonadParse n => ColumnType 'MSSQL -> InputFieldsParser n (Maybe (ScalarSelectionArguments 'MSSQL)) msScalarSelectionArgumentsParser _columnType = pure Nothing msOrderByOperators :: NamingCase -> NonEmpty ( Definition P.EnumValueInfo, (BasicOrderType 'MSSQL, NullsOrderType 'MSSQL) ) msOrderByOperators _tCase = -- NOTE: NamingCase is not being used here as we don't support naming conventions for this DB NE.fromList [ ( define G._asc "in ascending order, nulls first", (MSSQL.AscOrder, MSSQL.NullsFirst) ), ( define G._asc_nulls_first "in ascending order, nulls first", (MSSQL.AscOrder, MSSQL.NullsFirst) ), ( define G._asc_nulls_last "in ascending order, nulls last", (MSSQL.AscOrder, MSSQL.NullsLast) ), ( define G._desc "in descending order, nulls last", (MSSQL.DescOrder, MSSQL.NullsLast) ), ( define G._desc_nulls_first "in descending order, nulls first", (MSSQL.DescOrder, MSSQL.NullsFirst) ), ( define G._desc_nulls_last "in descending order, nulls last", (MSSQL.DescOrder, MSSQL.NullsLast) ) ] where define name desc = P.Definition name (Just desc) P.EnumValueInfo msComparisonExps :: forall m n r. ( BackendSchema 'MSSQL, MonadSchema n m, MonadError QErr m, MonadReader r m, Has SchemaOptions r, Has MkTypename r, Has NamingCase r ) => ColumnType 'MSSQL -> m (Parser 'Input n [ComparisonExp 'MSSQL]) msComparisonExps = P.memoize 'comparisonExps \columnType -> do -- see Note [Columns in comparison expression are never nullable] collapseIfNull <- retrieve soDangerousBooleanCollapse -- parsers used for individual values typedParser <- columnParser columnType (G.Nullability False) _nullableTextParser <- columnParser (ColumnScalar @'MSSQL MSSQL.VarcharType) (G.Nullability True) textParser <- columnParser (ColumnScalar @'MSSQL MSSQL.VarcharType) (G.Nullability False) let columnListParser = fmap openValueOrigin <$> P.list typedParser _textListParser = fmap openValueOrigin <$> P.list textParser -- field info let name = P.getName typedParser <> G.__MSSQL_comparison_exp desc = G.Description $ "Boolean expression to compare columns of type " <> P.getName typedParser <<> ". All fields are combined with logical 'AND'." -- Naming convention tCase <- asks getter pure $ P.object name (Just desc) $ fmap catMaybes $ sequenceA $ concat [ -- Common ops for all types equalityOperators tCase collapseIfNull (mkParameter <$> typedParser) (mkListLiteral <$> columnListParser), comparisonOperators tCase collapseIfNull (mkParameter <$> typedParser), -- Ops for String like types guard (isScalarColumnWhere (`elem` MSSQL.stringTypes) columnType) *> [ P.fieldOptional G.__like (Just "does the column match the given pattern") (ALIKE . mkParameter <$> typedParser), P.fieldOptional G.__nlike (Just "does the column NOT match the given pattern") (ANLIKE . mkParameter <$> typedParser) ], -- Ops for Geometry/Geography types guard (isScalarColumnWhere (`elem` MSSQL.geoTypes) columnType) *> [ P.fieldOptional G.__st_contains (Just "does the column contain the given value") (ABackendSpecific . MSSQL.ASTContains . mkParameter <$> typedParser), P.fieldOptional G.__st_equals (Just "is the column equal to given value (directionality is ignored)") (ABackendSpecific . MSSQL.ASTEquals . mkParameter <$> typedParser), P.fieldOptional G.__st_intersects (Just "does the column spatially intersect the given value") (ABackendSpecific . MSSQL.ASTIntersects . mkParameter <$> typedParser), P.fieldOptional G.__st_overlaps (Just "does the column 'spatially overlap' (intersect but not completely contain) the given value") (ABackendSpecific . MSSQL.ASTOverlaps . mkParameter <$> typedParser), P.fieldOptional G.__st_within (Just "is the column contained in the given value") (ABackendSpecific . MSSQL.ASTWithin . mkParameter <$> typedParser) ], -- Ops for Geometry types guard (isScalarColumnWhere (MSSQL.GeometryType ==) columnType) *> [ P.fieldOptional G.__st_crosses (Just "does the column cross the given geometry value") (ABackendSpecific . MSSQL.ASTCrosses . mkParameter <$> typedParser), P.fieldOptional G.__st_touches (Just "does the column have at least one point in common with the given geometry value") (ABackendSpecific . MSSQL.ASTTouches . mkParameter <$> typedParser) ] ] where mkListLiteral :: [ColumnValue 'MSSQL] -> UnpreparedValue 'MSSQL mkListLiteral = UVLiteral . MSSQL.ListExpression . fmap (MSSQL.ValueExpression . cvValue) msCountTypeInput :: MonadParse n => Maybe (Parser 'Both n (Column 'MSSQL)) -> InputFieldsParser n (IR.CountDistinct -> CountType 'MSSQL) msCountTypeInput = \case Just columnEnum -> do column <- P.fieldOptional G._column Nothing columnEnum pure $ flip mkCountType column Nothing -> pure $ flip mkCountType Nothing where mkCountType :: IR.CountDistinct -> Maybe (Column 'MSSQL) -> CountType 'MSSQL mkCountType _ Nothing = MSSQL.StarCountable mkCountType IR.SelectCountDistinct (Just col) = MSSQL.DistinctCountable col mkCountType IR.SelectCountNonDistinct (Just col) = MSSQL.NonNullFieldCountable col -- | Computed field parser. -- Currently unsupported: returns Nothing for now. msComputedField :: MonadBuildSchema 'MSSQL r m n => SourceInfo 'MSSQL -> ComputedFieldInfo 'MSSQL -> TableName 'MSSQL -> TableInfo 'MSSQL -> m (Maybe (FieldParser n (AnnotatedField 'MSSQL))) msComputedField _sourceName _fieldInfo _table _tableInfo = pure Nothing {- NOTE: Unused, should we remove? -- | Remote join field parser. -- Currently unsupported: returns Nothing for now. msRemoteRelationshipField :: MonadBuildSchema 'MSSQL r m n => RemoteFieldInfo (DBJoinField 'MSSQL) -> m (Maybe [FieldParser n (AnnotatedField 'MSSQL)]) msRemoteRelationshipField _remoteFieldInfo = pure Nothing -} -- | The 'node' root field of a Relay request. Relay is currently unsupported on MSSQL, -- meaning this parser will never be called: any attempt to create this parser should -- therefore fail. msNode :: MonadBuildSchema 'MSSQL r m n => m ( Parser 'Output n ( HashMap (TableName 'MSSQL) ( SourceName, SourceConfig 'MSSQL, SelPermInfo 'MSSQL, PrimaryKeyColumns 'MSSQL, AnnotatedFields 'MSSQL ) ) ) msNode = throw500 "MSSQL does not support relay; `node` should never be exposed in the schema."