{-# LANGUAGE StrictData #-} -- | Monad transformers for GraphQL schema construction and query parsing. module Hasura.GraphQL.Parser.Monad ( SchemaT , runSchemaT , ParseT , runParseT , ParseError(..) ) where import Hasura.Prelude import qualified Data.Dependent.Map as DM import qualified Data.Kind as K import qualified Data.Sequence.NonEmpty as NE import qualified Language.Haskell.TH as TH import Control.Monad.Unique import Control.Monad.Validate import Data.Dependent.Map (DMap) import Data.GADT.Compare.Extended import Data.IORef import Data.Parser.JSONPath import Data.Proxy (Proxy (..)) import System.IO.Unsafe (unsafeInterleaveIO) import Type.Reflection (Typeable, typeRep, (:~:) (..)) import Hasura.GraphQL.Parser.Class import Hasura.GraphQL.Parser.Schema import Hasura.RQL.Types.Error (Code) -- ------------------------------------------------------------------------------------------------- -- schema construction newtype SchemaT n m a = SchemaT { unSchemaT :: StateT (DMap ParserId (ParserById n)) m a } deriving (Functor, Applicative, Monad, MonadError e) runSchemaT :: forall m n a . Monad m => SchemaT n m a -> m a runSchemaT = flip evalStateT mempty . unSchemaT -- | see Note [SchemaT requires MonadIO] instance (MonadIO m, MonadUnique m, MonadParse n) => MonadSchema n (SchemaT n m) where memoizeOn name key buildParser = SchemaT do let parserId = ParserId name key parsersById <- get case DM.lookup parserId parsersById of Just (ParserById parser) -> pure parser Nothing -> do -- We manually do eager blackholing here using a MutVar rather than -- relying on MonadFix and ordinary thunk blackholing. Why? A few -- reasons: -- -- 1. We have more control. We aren’t at the whims of whatever -- MonadFix instance happens to get used. -- -- 2. We can be more precise. GHC’s lazy blackholing doesn’t always -- kick in when you’d expect. -- -- 3. We can provide more useful error reporting if things go wrong. -- Most usefully, we can include a HasCallStack source location. cell <- liftIO $ newIORef Nothing -- We use unsafeInterleaveIO here, which sounds scary, but -- unsafeInterleaveIO is actually far more safe than unsafePerformIO. -- unsafeInterleaveIO just defers the execution of the action until its -- result is needed, adding some laziness. -- -- That laziness can be dangerous if the action has side-effects, since -- the point at which the effect is performed can be unpredictable. But -- this action just reads, never writes, so that isn’t a concern. parserById <- liftIO $ unsafeInterleaveIO $ readIORef cell >>= \case Just parser -> pure $ ParserById parser Nothing -> error $ unlines [ "memoize: parser was forced before being fully constructed" , " parser constructor: " ++ TH.pprint name ] put $! DM.insert parserId parserById parsersById unique <- newUnique parser <- addDefinitionUnique unique <$> unSchemaT buildParser liftIO $ writeIORef cell (Just parser) pure parser -- We can add a reader in two places. I'm not sure which one is the correct -- one. But since we don't seem to change the values that are being read, I -- don't think it matters. deriving instance Monad m => MonadReader a (SchemaT n (ReaderT a m)) instance (MonadIO m, MonadUnique m, MonadParse n) => MonadSchema n (ReaderT a (SchemaT n m)) where memoizeOn name key = mapReaderT (memoizeOn name key) {- Note [SchemaT requires MonadIO] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The MonadSchema instance for SchemaT requires MonadIO, which is unsatisfying. The only reason the constraint is needed is to implement knot-tying via IORefs (see Note [Tying the knot] in Hasura.GraphQL.Parser.Class), which really only requires the power of ST. Using ST would be much nicer, since we could discharge the burden locally, but unfortunately we also want to use MonadUnique, which is handled by IO in the end. This means that we need IO at the base of our monad, so to use STRefs, we’d need a hypothetical STT transformer (i.e. a monad transformer version of ST). But such a thing isn’t safe in general, since reentrant monads like ListT or ContT would incorrectly share state between the different threads of execution. In theory, this can be resolved by using something like Vault (from the vault package) to create “splittable” sets of variable references. That would allow you to create a transformer with an STRef-like interface that works over any arbitrary monad. However, while the interface would be safe, the implementation of such an abstraction requires unsafe primitives, and to the best of my knowledge no such transformer exists in any existing libraries. So we decide it isn’t worth the trouble and just use MonadIO. If `eff` ever pans out, it should be able to support this more naturally, so we can fix it then. -} -- | A key used to distinguish calls to 'memoize'd functions. The 'TH.Name' -- distinguishes calls to completely different parsers, and the @a@ value -- records the arguments. data ParserId (t :: ((K.Type -> K.Type) -> K.Type -> K.Type, K.Type)) where ParserId :: (Ord a, Typeable p, Typeable a, Typeable b) => TH.Name -> a -> ParserId '(p, b) instance GEq ParserId where geq (ParserId name1 (arg1 :: a1) :: ParserId t1) (ParserId name2 (arg2 :: a2) :: ParserId t2) | _ :: Proxy '(p1, b1) <- Proxy @t1 , _ :: Proxy '(p2, b2) <- Proxy @t2 , name1 == name2 , Just Refl <- typeRep @a1 `geq` typeRep @a2 , arg1 == arg2 , Just Refl <- typeRep @p1 `geq` typeRep @p2 , Just Refl <- typeRep @b1 `geq` typeRep @b2 = Just Refl | otherwise = Nothing instance GCompare ParserId where gcompare (ParserId name1 (arg1 :: a1) :: ParserId t1) (ParserId name2 (arg2 :: a2) :: ParserId t2) | _ :: Proxy '(p1, b1) <- Proxy @t1 , _ :: Proxy '(p2, b2) <- Proxy @t2 = strengthenOrdering (compare name1 name2) `extendGOrdering` gcompare (typeRep @a1) (typeRep @a2) `extendGOrdering` strengthenOrdering (compare arg1 arg2) `extendGOrdering` gcompare (typeRep @p1) (typeRep @p2) `extendGOrdering` gcompare (typeRep @b1) (typeRep @b2) `extendGOrdering` GEQ -- | A newtype wrapper around a 'Parser' that rearranges the type parameters -- so that it can be indexed by a 'ParserId' in a 'DMap'. -- -- This is really just a single newtype, but it’s implemented as a data family -- because GHC doesn’t allow ordinary datatype declarations to pattern-match on -- type parameters, and we want to match on the tuple. data family ParserById (m :: K.Type -> K.Type) (a :: ((K.Type -> K.Type) -> K.Type -> K.Type, K.Type)) newtype instance ParserById m '(p, a) = ParserById (p m a) -- ------------------------------------------------------------------------------------------------- -- query parsing newtype ParseT m a = ParseT { unParseT :: ReaderT JSONPath (StateT QueryReusability (ValidateT (NESeq ParseError) m)) a } deriving (Functor, Applicative, Monad) runParseT :: Functor m => ParseT m a -> m (Either (NESeq ParseError) (a, QueryReusability)) runParseT = unParseT >>> flip runReaderT [] >>> flip runStateT mempty >>> runValidateT instance MonadTrans ParseT where lift = ParseT . lift . lift . lift instance Monad m => MonadParse (ParseT m) where withPath f x = ParseT $ withReaderT f $ unParseT x parseErrorWith code text = ParseT $ do path <- ask lift $ refute $ NE.singleton ParseError{ peCode = code, pePath = path, peMessage = text } markNotReusable = ParseT $ lift $ put NotReusable data ParseError = ParseError { pePath :: JSONPath , peMessage :: Text , peCode :: Code }