module Data.HashMap.Strict.Extended ( module M, catMaybes, fromListOn, groupOn, groupOnNE, differenceOn, insertWithM, isInverseOf, unionWithM, unionsAll, homogenise, ) where import Control.Monad (foldM) import Data.Foldable qualified as F import Data.Function (on) import Data.HashMap.Strict as M import Data.HashSet (HashSet) import Data.HashSet qualified as S import Data.Hashable (Hashable) import Data.List qualified as L import Data.List.NonEmpty (NonEmpty (..)) import Prelude catMaybes :: HashMap k (Maybe v) -> HashMap k v catMaybes = M.mapMaybe id fromListOn :: (Eq k, Hashable k) => (v -> k) -> [v] -> HashMap k v fromListOn f = fromList . Prelude.map (\v -> (f v, v)) -- | Given a 'Foldable' sequence of values and a function that extracts a key from each value, -- returns a 'HashMap' that maps each key to a list of all values in the sequence for which the -- given function produced it. -- -- >>> groupOn (take 1) ["foo", "bar", "baz"] -- fromList [("f", ["foo"]), ("b", ["bar", "baz"])] groupOn :: (Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> HashMap k [v] groupOn f = fmap F.toList . groupOnNE f groupOnNE :: (Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> HashMap k (NonEmpty v) groupOnNE f = Prelude.foldr (\v -> M.alter (Just . (v :|) . maybe [] F.toList) (f v)) M.empty differenceOn :: (Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> t v -> HashMap k v differenceOn f = M.difference `on` (fromListOn f . F.toList) -- | Monadic version of https://hackage.haskell.org/package/unordered-containers-0.2.18.0/docs/Data-HashMap-Internal.html#v:insertWith insertWithM :: (Monad m, Hashable k, Eq k) => (v -> v -> m v) -> k -> v -> HashMap k v -> m (HashMap k v) insertWithM f k v m = sequence $ M.insertWith ( \a b -> do x <- a y <- b f x y ) k (return v) (return <$> m) -- | Determines whether the left-hand-side and the right-hand-side are inverses of each other. -- -- More specifically, for two maps @A@ and @B@, 'isInverseOf' is satisfied when both of the -- following are true: -- 1. @∀ key ∈ A. A[key] ∈ B ∧ B[A[key]] == key@ -- 2. @∀ key ∈ B. B[key] ∈ A ∧ A[B[key]] == key@ isInverseOf :: (Eq k, Hashable k, Eq v, Hashable v) => HashMap k v -> HashMap v k -> Bool lhs `isInverseOf` rhs = lhs `invertedBy` rhs && rhs `invertedBy` lhs where invertedBy :: forall s t. (Eq s, Eq t, Hashable t) => HashMap s t -> HashMap t s -> Bool a `invertedBy` b = and $ do (k, v) <- M.toList a pure $ M.lookup v b == Just k -- | The union of two maps. -- -- If a key occurs in both maps, the provided function (first argument) will be -- used to compute the result. Unlike 'unionWith', 'unionWithA' performs the -- computation in an arbitratry monad. unionWithM :: (Monad m, Eq k, Hashable k) => (v -> v -> m v) -> HashMap k v -> HashMap k v -> m (HashMap k v) unionWithM f m1 m2 = foldM step m1 (toList m2) where step m (k, new) = case M.lookup k m of Nothing -> pure $ insert k new m Just old -> do combined <- f new old pure $ insert k combined m -- | Like 'M.unions', but keeping all elements in the result. unionsAll :: (Eq k, Hashable k, Foldable t) => t (HashMap k v) -> HashMap k (NonEmpty v) unionsAll = F.foldl' (\a b -> unionWith (<>) a (fmap (:| []) b)) M.empty -- | Homogenise maps, such that all maps range over the full set of -- keys, inserting a default value as needed. homogenise :: (Hashable a, Eq a) => b -> [HashMap a b] -> (HashSet a, [HashMap a b]) homogenise defaultValue maps = let ks = S.unions $ L.map keysSet maps defaults = fromList [(k, defaultValue) | k <- S.toList ks] in (ks, L.map (<> defaults) maps)