{-# OPTIONS_HADDOCK not-home #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE RoleAnnotations #-} module Hasura.Incremental.Select ( Select(..) , ConstS(..) , selectKey , UniqueS , newUniqueS , DMapS(..) ) where import Hasura.Prelude import qualified Data.Dependent.Map as DM import qualified Data.HashMap.Strict as M import Control.Monad.Unique import Data.GADT.Compare import Data.Kind import Unsafe.Coerce (unsafeCoerce) -- | The 'Select' class provides a way to access subparts of a product type using a reified -- 'Selector'. A @'Selector' a b@ is essentially a function from @a@ to @b@, and indeed 'select' -- converts a 'Selector' to such a function. However, unlike functions, 'Selector's can be compared -- for equality using 'GEq' and ordered using 'GCompare'. -- -- This is useful to implement dependency tracking, since it’s possible to track in a reified form -- exactly which parts of a data structure are used. class (GCompare (Selector a)) => Select a where type Selector a :: Type -> Type select :: Selector a b -> a -> b instance (Eq k, Ord k, Hashable k) => Select (HashMap k v) where type Selector (HashMap k v) = ConstS k (Maybe v) select (ConstS k) = M.lookup k instance (GCompare k) => Select (DM.DMap k f) where type Selector (DM.DMap k f) = DMapS k f select (DMapS k) = DM.lookup k -- | The constant selector, which is useful for representing selectors into data structures where -- all fields have the same type. Matching on a value of type @'ConstS' k a b@ causes @a@ and @b@ to -- unify, effectively “pinning” @b@ to @a@. data ConstS k a b where ConstS :: !k -> ConstS k a a selectKey :: (Select a, Selector a ~ ConstS k v) => k -> a -> v selectKey = select . ConstS instance (Eq k) => GEq (ConstS k a) where ConstS a `geq` ConstS b | a == b = Just Refl | otherwise = Nothing instance (Ord k) => GCompare (ConstS k a) where ConstS a `gcompare` ConstS b = case compare a b of LT -> GLT EQ -> GEQ GT -> GGT -- | A 'UniqueS' is, as the name implies, a globally-unique 'Selector', which can be created using -- 'newUniqueS'. If a value of type @'UniqueS' a@ is found to be equal (via 'geq') with another -- value of type @'UniqueS' b@, then @a@ and @b@ must be the same type. This effectively allows the -- creation of a dynamically-extensible sum type, where new constructors can be created at runtime -- using 'newUniqueS'. type role UniqueS nominal newtype UniqueS a = UniqueS Unique deriving (Eq) newUniqueS :: (MonadUnique m) => m (UniqueS a) newUniqueS = UniqueS <$> newUnique {-# INLINE newUniqueS #-} instance GEq UniqueS where UniqueS a `geq` UniqueS b -- This use of `unsafeCoerce` is safe as long as we don’t export the constructor of `UniqueS`. -- Because a `UniqueS` is, in fact, unique, then we can be certain that equality of 'UniqueS's -- implies equality of their argument types. | a == b = Just (unsafeCoerce Refl) | otherwise = Nothing instance GCompare UniqueS where UniqueS a `gcompare` UniqueS b = case compare a b of LT -> GLT -- See note about `unsafeCoerce` above. EQ -> unsafeCoerce GEQ GT -> GGT data DMapS k f a where DMapS :: !(k a) -> DMapS k f (Maybe (f a)) instance (GEq k) => GEq (DMapS k f) where DMapS a `geq` DMapS b = case a `geq` b of Just Refl -> Just Refl Nothing -> Nothing instance (GCompare k) => GCompare (DMapS k f) where DMapS a `gcompare` DMapS b = case a `gcompare` b of GLT -> GLT GEQ -> GEQ GGT -> GGT