graphql-engine/server/src-lib/Hasura/SQL/AnyBackend.hs
Antoine Leblanc 405b29c82d server: generate backend-related code with TemplateHaskell
GitOrigin-RevId: 251b8dbeb5181e42cca0369abf54bfc2179ad3d8
2021-03-18 20:35:23 +00:00

539 lines
21 KiB
Haskell

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE Arrows #-}
{-# LANGUAGE UndecidableInstances #-}
module Hasura.SQL.AnyBackend
( AnyBackend
, mkAnyBackend
, dispatchAnyBackend
, dispatchAnyBackend'
, dispatchAnyBackendArrow
, unpackAnyBackend
, composeAnyBackend
, runBackend
) where
import Hasura.Prelude
import Control.Arrow.Extended (ArrowChoice, arr, (|||))
import Data.Aeson (FromJSON (..), ToJSON (..), Value (..), withObject,
(.:?))
import Data.Hashable (Hashable (hashWithSalt))
import Data.Kind (Constraint, Type)
import Language.Haskell.TH hiding (Type)
import Test.QuickCheck (oneof)
import Hasura.RQL.Types.Backend
import Hasura.SQL.Backend
import Hasura.SQL.TH
import Hasura.SQL.Tag
--------------------------------------------------------------------------------
-- Types and constraints
-- | This type is essentially an unlabeled box for types indexed by BackendType.
-- Given some type defined as 'data T (b :: BackendType) = ...', we can define
-- 'AnyBackend T' without mentioning any 'BackendType'.
--
-- This is useful for having generic containers of potentially different types
-- of T. For instance, @SourceCache@ is defined as a
-- @HashMap SourceName (AnyBackend SourceInfo)@.
--
-- This type is generated with Template Haskell to have one constructor per
-- backend. This declaration generates the following type:
--
-- data AnyBackend (i :: BackendType -> Type)
-- = PostgresValue (i 'Postgres)
-- | MSSQLValue (i 'MSSQL)
-- | ...
$(do
-- the kind of the type variable, expressed with a quote
varKind <- [t| BackendType -> Type |]
-- how to build a basic type: no UNPACK, no strict!, just a name
let normalType = (Bang NoSourceUnpackedness NoSourceStrictness,)
-- the name of the type variable
let typeVarName = mkName "i"
backendData
-- the name of the type
(mkName "AnyBackend")
-- the type variable
[KindedTV typeVarName varKind]
-- the constructor for each backend
(\b -> pure $ NormalC
-- the name of the constructor: `FooValue`
(getBackendValueName b)
-- one argument: `i 'Foo`
-- (we Apply a type Variable to a Promoted name)
[normalType $ AppT (VarT typeVarName) (PromotedT b)]
)
)
-- | Generates a constraint for all backends.
-- This Template Haskell expression generates the following constraint type:
--
-- type AllBackendsSatisfy (c :: BackendType -> Constraint) =
-- ( c 'Postgres
-- , c 'MSSQL
-- , ...
-- )
--
-- That is, given a class C, this creates the constraint that dictates that all
-- backend must satisfy C.
type AllBackendsSatisfy (c :: BackendType -> Constraint) =
$(do
-- the constraint for each backend: `c 'Foo`
-- (we Apply a type Variable to a Promoted name)
constraints <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "c") (PromotedT b)
-- transforms a list of constraints into a tuple of constraints
-- by folding the "type application" constructor:
--
-- > apply (,,) [c 'Foo, c 'Bar, c 'Baz]
-- > apply (c 'Foo,,) [c 'Bar, c 'Baz]
-- > apply (c 'Foo, c 'Bar,) [c 'Baz]
-- > apply (c 'Foo, c 'Bar, c 'Baz) []
-- = (c 'Foo, c 'Bar, c 'Baz)
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
-- | Generates a constraint for a generic type over all backends.
-- This Template Haskell expression generates the following constraint type:
--
-- type SatisfiesForAllBackends
-- (i :: BackendType -> Type)
-- (c :: Type -> Constraint)
-- = ( c (i 'Postgres)
-- , c (i 'MSSQL)
-- , ...
-- )
--
-- That is, given a type I and a class C, this creates the constraint that
-- dictates that for all backends b, @I b@ must satisfy C.
type SatisfiesForAllBackends
(i :: BackendType -> Type)
(c :: Type -> Constraint)
= $(do
-- the constraint for each backend: `c (i 'Foo)`
constraints <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "c") $ AppT (VarT $ mkName "i") (PromotedT b)
-- transforms a list of constraints into a tuple of constraints
-- by folding the type application constructor
-- by folding the "type application" constructor:
--
-- > apply (,,) [c (i 'Foo), c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo),,) [c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar),) [c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar), c (i 'Baz)) []
-- = (c (i 'Foo), c (i 'Bar), c (i 'Baz))
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
--------------------------------------------------------------------------------
-- Functions on AnyBackend
-- | Transforms an `AnyBackend i` into an `AnyBackend j`.
mapBackend
:: forall
(i :: BackendType -> Type)
(j :: BackendType -> Type)
. AnyBackend i
-> (forall b. i b -> j b)
-> AnyBackend j
mapBackend e f =
-- generates a case switch that, for each constructor, applies the provided function
-- case e of
-- FooValue x -> FooValue (f x)
-- BarValue x -> BarValue (f x)
$(do
-- we create a case match for each backend
matches <- forEachBackend \b -> do
-- the name of the constructor
let consName = getBackendValueName b
-- the patterrn we match: `FooValue x`
let matchPattern = ConP consName [VarP $ mkName "x"]
-- the body of the match: `FooValue (f x)`
matchBody <- [| $(pure $ ConE consName) (f x) |]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [| e |]
-- return the the expression of the case switch
pure $ CaseE caseExpr matches
)
-- | Creates a new @AnyBackend i@ for a given backend @b@ by wrapping the given @i b@.
mkAnyBackend
:: forall
(b :: BackendType)
(i :: BackendType -> Type)
. Backend b
=> i b
-> AnyBackend i
mkAnyBackend =
-- generates a case switch that associates a tag constructor to a value constructor
-- case backendTag @b of
-- FooTag-> FooValue
-- BarTag -> BarValue
$(backendCase [| backendTag @b |]
-- the pattern for a backend
(\b -> pure $ ConP (getBackendTagName b) [])
-- the body for a backend
(pure . ConE . getBackendValueName)
-- no default case
Nothing
)
-- | Dispatch a function to the value inside the @AnyBackend@, that does not
-- require bringing into scope a new class constraint.
runBackend
:: forall
(i :: BackendType -> Type)
(r :: Type)
. AnyBackend i
-> (forall (b :: BackendType). i b -> r)
-> r
runBackend b f = $(mkDispatch 'f 'b)
-- | Dispatch an existential using an universally quantified function while
-- also resolving a different constraint.
-- Use this to dispatch Backend* instances.
-- This is essentially a wrapper around 'runAnyBackend f . repackAnyBackend @c'.
dispatchAnyBackend
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. AllBackendsSatisfy c
=> AnyBackend i
-> (forall (b :: BackendType). c b => i b -> r)
-> r
dispatchAnyBackend e f = $(mkDispatch 'f 'e)
-- | Unlike 'dispatchAnyBackend', the expected constraint has a different kind.
-- Use for classes like 'Show', 'ToJSON', etc.
dispatchAnyBackend'
:: forall
(c :: Type -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. i `SatisfiesForAllBackends` c
=> AnyBackend i
-> (forall (b :: BackendType). c (i b) => i b -> r)
-> r
dispatchAnyBackend' e f = $(mkDispatch 'f 'e)
-- | Sometimes we need to run operations on two backends of the same type.
-- If the backends don't contain the same type, the given 'r' value is returned.
-- Otherwise, the function is called with the two wrapped values.
composeAnyBackend
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. AllBackendsSatisfy c
=> (forall (b :: BackendType). c b => i b -> i b -> r)
-> AnyBackend i
-> AnyBackend i
-> r
-> r
composeAnyBackend f e1 e2 owise =
-- generates the following case expression for all backends:
-- (FooValue a, FooValue b) -> f a b
-- (BarValue a, BarValue b) -> f a b
-- ...
-- _ -> owise
$(backendCase [| (e1, e2) |]
-- the pattern for a given backend: `(FooValue a, FooValue b)`
( \b -> do
let valueCon n = pure $ ConP (getBackendValueName b) [VarP $ mkName n]
[p| ($(valueCon "a"), $(valueCon "b")) |]
)
-- the body for each backend: `f a b`
( const [| f a b |] )
-- the default case
( Just [| owise |] )
)
-- | Try to unpack the type of an existential.
-- Returns @Just x@ upon a succesful match, @Nothing@ otherwise.
unpackAnyBackend
:: forall
(b :: BackendType)
(i :: BackendType -> Type)
. Backend b
=> AnyBackend i
-> Maybe (i b)
unpackAnyBackend exists =
-- generates the following case expression for all backends:
-- (FooTag, FooValue a) -> Just a
-- ...
-- _ -> Nothing
$(backendCase [| (backendTag @b, exists) |]
-- the pattern for a given backend
( \b -> do
let tagConstructor = pure $ ConP (getBackendTagName b) []
valConstructor = pure $ ConP (getBackendValueName b) [VarP $ mkName "a"]
[p| ($tagConstructor, $valConstructor) |]
)
-- the body for each backend
( const [| Just a |] )
-- the default case
( Just [| Nothing |] )
)
--------------------------------------------------------------------------------
-- Special case for arrows
-- Sadly, we CAN'T mix template haskell and arrow syntax... Meaning we can't
-- generate a `backendCase` within proc syntax. What we have to do instead is to
-- MANUALLY DESUGAR the arrow code, to manually construct the following
-- pipeline.
--
-- ┌────────────┐ ┌────────────────────┐ ┌───┐
-- │ AnyBackend ├─┬──────►│ Left PostgresValue ├───────────────►│ f ├────────┐
-- └────────────┘ │ └────────────────────┘ └───┘ │
-- │ │
-- │ ┌─────────────────────────┐ ┌───┐ │
-- └─┬────►│ Right (Left MSSQLValue) ├──────────►│ f ├─────┐ │
-- │ └─────────────────────────┘ └───┘ │ │
-- │ │ │
-- │ ┌─────────────────────────────────┐ ┌───┐ │ │
-- └─┬──►│ Right (Right (Left MongoValue)) ├───┤ f ├──┐ │ │
-- │ └─────────────────────────────────┘ └───┘ │ │ │
-- │ │ │ │
-- │ ┌───────────────────────────┐ ┌───┐ │ │ │ ┌───┐
-- └──►│ Right (Right (Right ...)) ├─────────┤ f ├──┴──┴──┴─►│ r │
-- └───────────────────────────┘ └───┘ └───┘
--
-- This is what, internally, GHC would translate an arrow case-switch into: the
-- only tool it has is:
-- (|||) :: a b d -> a c d -> a (Either b c) d
--
-- It must therefore encode the case switch as an arrow from the original value
-- to this tree of Either, and then coalesce them using (|||). This is what we
-- do here.
-- | First, we create a type to represent our complicated Either type. We use
-- `Void` as a terminating case for our recursion. This declaration creates the
-- following type:
--
-- type BackendChoice (i :: BackendType -> Type)
-- = Either (i 'Postgres)
-- ( Either (i 'MSSQL)
-- ( Either ...
-- Void
type BackendChoice (i :: BackendType -> Type) =
$(do
-- creates the type (i b) for each backend b
types <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "i") (PromotedT b)
-- generate the either type by folding over that list
let appEither l r = [t| Either $(pure l) $(pure r) |]
foldrM appEither (ConT ''Void) types
)
-- | Spread a 'AnyBackend' into a 'BackendChoice'.
--
-- Given backends Foo, Bar, Baz, the type of `BackendChoice c` will be:
-- ( Either (c 'Foo)
-- ( Either (c 'Bar)
-- ( Either (c 'Baz)
-- Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- case e of
-- FooValue x -> Left x
-- BarValue x -> Right (Left x)
-- BazValue x -> Right (Right (Left x))
spreadChoice
:: forall
(i :: BackendType -> Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr)
=> arr (AnyBackend i) (BackendChoice i)
spreadChoice = arr $ \e ->
$(do
-- to each backend we match a 'BackendChoice' constructor
-- in order: Left, Right . Left, Right . Right . Left...
let choiceCons = iterate (UInfixE (ConE 'Right) (VarE '(.))) (ConE 'Left)
backendCons <- backendConstructors
-- we then construct the case match for each of them
matches <- for (zip backendCons choiceCons) \(b, c) -> do
-- name of the constructor: FooValue
let consName = getBackendValueName b
-- pattern of the match: `FooValue x`
let matchPattern = ConP consName [VarP $ mkName "x"]
-- expression of the match: applying the 'BackendChoice' constructor to x
matchBody <- [| $(pure c) x |]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [| e |]
-- we return the case expression
pure $ CaseE caseExpr matches
)
-- | Coalesce a 'BackendChoice' into a result, given an arrow from each
-- possibilty to a common result.
--
-- Given backends Foo, Bar, Baz, the type of `BackendChoice c` will be:
-- ( Either (c 'Foo)
-- ( Either (c 'Bar)
-- ( Either (c 'Baz)
-- Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- ( arrow |||
-- ( arrow |||
-- ( arrow |||
-- absurd )))
coalesceChoice
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (i b) r)
-> arr (BackendChoice i) r
coalesceChoice arrow =
$(do
-- associate the arrow to each type
arrows <- forEachBackend $ const [| arrow |]
-- the default case of our fold is `arr absurd` for the terminating Void
baseCase <- [| arr absurd |]
-- how to combine two arrows using (|||)
let combine = \l r -> [| $(pure l) ||| $(pure r) |]
foldrM combine baseCase arrows
)
-- | Dispatch variant for use with arrow syntax. The universally quantified
-- dispatch function is an arrow instead. Since we can't express this using
-- Template Haskell, we instead generate the arrow by combining `spreadChoice`
-- and `coalesceChoice`.
dispatchAnyBackendArrow'
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (i b) r)
-> arr (AnyBackend i) r
dispatchAnyBackendArrow' arrow = spreadChoice >>> coalesceChoice @c arrow
-- | While dispatchAnyBackendArrow' is expressed over an `AnyBackend`, in
-- practice we need slightly more complex types. Specifically: the only call
-- site for 'dispatchAnyBackendArrow' uses a four element tuple containing an
-- 'AnyBackend'.
newtype BackendArrowTuple x y z i (b :: BackendType) = BackendArrowTuple { unTuple :: (x, y, i b, z) }
-- | Finally, we can do the dispatch on the four-elements tuple.
-- Here's what happens, step by step:
--
-- ┌─────────────────────────┐
-- │ (x, y, AnyBackend i, z) │
-- └─┬───────────────────────┘
-- │
-- │ cons
-- ▼
-- ┌────────────────────────────────────────┐ ┌─────────────────────────────┐
-- │ AnyBackend (BackendArrowTuple x y z i) │ ┌───► │ BackendArrowTuple x y z i b │
-- └─┬──────────────────────────────────────┘ │ └─┬───────────────────────────┘
-- │ │ │
-- │ spreadChoice │ │ arr unTuple
-- ▼ │ ▼
-- ┌───────────────────────────────────────────┐ │ ┌────────────────┐
-- │ BackendChoice (BackendArrowTuple x y z i) │ │ │ (x, y, i b, z) │
-- └─┬─────────────────────────────────────────┘ │ └─┬──────────────┘
-- │ │ │
-- │ coalesceChoice (arr unTuple >>> arrow) ◄─────┘ │ arrow
-- ▼ ▼
-- ┌───┐ ┌───┐
-- │ r │ │ r │
-- └───┘ └───┘
--
dispatchAnyBackendArrow
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
x y z
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (x, y, i b, z) r)
-> arr (x, y, AnyBackend i, z) r
dispatchAnyBackendArrow arrow =
arr cons >>> dispatchAnyBackendArrow' @c (arr unTuple >>> arrow)
where
cons :: (x, y, AnyBackend i, z) -> AnyBackend (BackendArrowTuple x y z i)
cons (x, y, e, z) = mapBackend e \ib -> BackendArrowTuple (x, y, ib, z)
--------------------------------------------------------------------------------
-- Instances for 'AnyBackend'
instance i `SatisfiesForAllBackends` Show => Show (AnyBackend i) where
show e = dispatchAnyBackend' @Show e show
instance i `SatisfiesForAllBackends` Eq => Eq (AnyBackend i) where
e1 == e2 =
-- generates the following case expression for all backends:
-- (FooValue a, FooValue b) -> a == b
-- ...
-- _ -> False
$(backendCase [| (e1, e2) |]
-- the pattern for a given backend
( \b -> do
let valueCon n = pure $ ConP (getBackendValueName b) [VarP $ mkName n]
[p| ($(valueCon "a"), $(valueCon "b")) |]
)
-- the body for each backend
( const [| a == b |] )
-- the default case
( Just [| False |] )
)
instance i `SatisfiesForAllBackends` ToJSON => ToJSON (AnyBackend i) where
toJSON e = dispatchAnyBackend' @ToJSON e toJSON
instance i `SatisfiesForAllBackends` FromJSON => FromJSON (AnyBackend i) where
parseJSON = withObject "AnyBackend" $ \o -> do
backendKind <- fromMaybe Postgres <$> o .:? "kind"
-- generates the following case for all backends:
-- Foo -> FooValue <$> parseJSON (Object o)
-- Bar -> BarValue <$> parseJSON (Object o)
-- ...
$(backendCase [| backendKind |]
-- the pattern for a given backend
( \b -> pure $ ConP b [] )
-- the body for each backend
( \b -> do
let valueCon = pure $ ConE $ getBackendValueName b
[| $valueCon <$> parseJSON (Object o) |]
)
-- no default case
Nothing
)
instance i `SatisfiesForAllBackends` Hashable => Hashable (AnyBackend i) where
hashWithSalt salt e = dispatchAnyBackend' @Hashable e (hashWithSalt salt)
instance i `SatisfiesForAllBackends` Arbitrary => Arbitrary (AnyBackend i) where
arbitrary = oneof
-- generates @FooValue <$> arbitrary@ for each backend
$(backendList \b -> [| $(pure $ ConE $ getBackendValueName b) <$> arbitrary |])