graphql-engine/server/src-lib/Hasura/GraphQL/Schema/Action.hs
Auke Booij 8ccf7724ce server: Metadata origin for definitions (type parameter version v2)
The code that builds the GraphQL schema, and `buildGQLContext` in particular, is partial: not every value of `(ServerConfigCtx, GraphQLQueryType, SourceCache, HashMap RemoteSchemaName (RemoteSchemaCtx, MetadataObject), ActionCache, AnnotatedCustomTypes)` results in a valid GraphQL schema. When it fails, we want to be able to return better error messages than we currently do.

The key thing that is missing is a way to trace back GraphQL type information to their origin from the Hasura metadata. Currently, we have a number of correctness checks of our GraphQL schema. But these correctness checks only have access to pure GraphQL type information, and hence can only report errors in terms of that. Possibly the worst is the "conflicting definitions" error, which, in practice, can only be debugged by Hasura engineers. This is terrible DX for customers.

This PR allows us to print better error messages, by adding a field to the `Definition` type that traces the GraphQL type to its origin in the metadata. So the idea is simple: just add `MetadataObjId`, or `Maybe` that, or some other sum type of that, to `Definition`.

However, we want to avoid having to import a `Hasura.RQL` module from `Hasura.GraphQL.Parser`. So we instead define this additional field of `Definition` through a new type parameter, which is threaded through in `Hasura.GraphQL.Parser`. We then define type synonyms in `Hasura.GraphQL.Schema.Parser` that fill in this type parameter, so that it is not visible for the majority of the codebase.

The idea of associating metadata information to `Definition`s really comes to fruition when combined with hasura/graphql-engine-mono#4517. Their combination would allow us to use the API of fatal errors (just like the current `MonadError QErr`) to report _inconsistencies_ in the metadata. Such inconsistencies are then _automatically_ ignored. So no ad-hoc decisions need to be made on how to cut out inconsistent metadata from the GraphQL schema. This will allow us to report much better errors, as well as improve the likelihood of a successful HGE startup.

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4770
Co-authored-by: Samir Talwar <47582+SamirTalwar@users.noreply.github.com>
GitOrigin-RevId: 728402b0cae83ae8e83463a826ceeb609001acae
2022-06-28 15:53:44 +00:00

457 lines
20 KiB
Haskell

{-# LANGUAGE TemplateHaskellQuotes #-}
module Hasura.GraphQL.Schema.Action
( actionExecute,
actionAsyncMutation,
actionAsyncQuery,
)
where
import Data.Aeson qualified as J
import Data.Aeson.Key qualified as K
import Data.Aeson.KeyMap qualified as KM
import Data.Has
import Data.HashMap.Strict qualified as Map
import Data.Text.Extended
import Data.Text.NonEmpty
import Hasura.Backends.Postgres.Instances.Schema ()
import Hasura.Backends.Postgres.SQL.Types
import Hasura.Backends.Postgres.Types.Column
import Hasura.Base.Error
import Hasura.GraphQL.Parser.Class
import Hasura.GraphQL.Schema.Backend
import Hasura.GraphQL.Schema.Common
import Hasura.GraphQL.Schema.Parser
( FieldParser,
InputFieldsParser,
Kind (..),
Parser,
)
import Hasura.GraphQL.Schema.Parser qualified as P
import Hasura.Name qualified as Name
import Hasura.Prelude
import Hasura.RQL.IR.Action qualified as IR
import Hasura.RQL.IR.Root qualified as IR
import Hasura.RQL.IR.Value qualified as IR
import Hasura.RQL.Types.Action
import Hasura.RQL.Types.Backend
import Hasura.RQL.Types.Column
import Hasura.RQL.Types.Common
import Hasura.RQL.Types.CustomTypes
import Hasura.RQL.Types.Relationships.Remote
import Hasura.RQL.Types.Table
import Hasura.SQL.AnyBackend qualified as AB
import Hasura.SQL.Backend
import Hasura.Session
import Language.GraphQL.Draft.Syntax qualified as G
-- | actionExecute is used to execute either a query action or a synchronous
-- mutation action. A query action or a synchronous mutation action accepts
-- the field name and input arguments and a selectionset. The
-- input argument and selectionset types are defined by the user.
--
-- > action_name(action_input_arguments) {
-- > col1: col1_type
-- > col2: col2_type
-- > }
actionExecute ::
forall r m n.
MonadBuildSchemaBase r m n =>
AnnotatedCustomTypes ->
ActionInfo ->
m (Maybe (FieldParser n (IR.AnnActionExecution (IR.RemoteRelationshipField IR.UnpreparedValue))))
actionExecute customTypes actionInfo = runMaybeT do
roleName <- asks getter
guard (roleName == adminRoleName || roleName `Map.member` permissions)
let fieldName = unActionName actionName
description = G.Description <$> comment
inputArguments <- lift $ actionInputArguments (_actInputTypes customTypes) $ _adArguments definition
parserOutput <- case outputObject of
AOTObject aot -> do
selectionSet <- lift $ actionOutputFields outputType aot (_actObjectTypes customTypes)
pure $ P.subselection fieldName description inputArguments selectionSet
AOTScalar ast -> do
let selectionSet = customScalarParser ast
pure $ P.selection fieldName description inputArguments selectionSet <&> (,[])
pure $
parserOutput
<&> \(argsJson, fields) ->
IR.AnnActionExecution
{ _aaeName = actionName,
_aaeFields = fields,
_aaePayload = argsJson,
_aaeOutputType = _adOutputType definition,
_aaeOutputFields = IR.getActionOutputFields outputObject,
_aaeWebhook = _adHandler definition,
_aaeHeaders = _adHeaders definition,
_aaeForwardClientHeaders = _adForwardClientHeaders definition,
_aaeTimeOut = _adTimeout definition,
_aaeRequestTransform = _adRequestTransform definition,
_aaeResponseTransform = _adResponseTransform definition
}
where
ActionInfo actionName (outputType, outputObject) definition permissions _ comment = actionInfo
-- | actionAsyncMutation is used to execute a asynchronous mutation action. An
-- asynchronous action expects the field name and the input arguments to the
-- action. A selectionset is *not* expected. An action ID (UUID) will be
-- returned after performing the action
--
-- > action_name(action_input_arguments)
actionAsyncMutation ::
forall r m n.
MonadBuildSchemaBase r m n =>
HashMap G.Name AnnotatedInputType ->
ActionInfo ->
m (Maybe (FieldParser n IR.AnnActionMutationAsync))
actionAsyncMutation nonObjectTypeMap actionInfo = runMaybeT do
roleName <- asks getter
guard $ roleName == adminRoleName || roleName `Map.member` permissions
inputArguments <- lift $ actionInputArguments nonObjectTypeMap $ _adArguments definition
let fieldName = unActionName actionName
description = G.Description <$> comment
pure $
P.selection fieldName description inputArguments actionIdParser
<&> IR.AnnActionMutationAsync actionName forwardClientHeaders
where
ActionInfo actionName _ definition permissions forwardClientHeaders comment = actionInfo
-- | actionAsyncQuery is used to query/subscribe to the result of an
-- asynchronous mutation action. The only input argument to an
-- asynchronous mutation action is the action ID (UUID) and a selection
-- set is expected, the selection set contains 4 fields namely 'id',
-- 'created_at','errors' and 'output'. The result of the action can be queried
-- through the 'output' field.
--
-- > action_name (id: UUID!) {
-- > id: UUID!
-- > created_at: timestampz!
-- > errors: JSON
-- > output: user_defined_type!
-- > }
actionAsyncQuery ::
forall r m n.
MonadBuildSchema ('Postgres 'Vanilla) r m n =>
HashMap G.Name AnnotatedObjectType ->
ActionInfo ->
m (Maybe (FieldParser n (IR.AnnActionAsyncQuery ('Postgres 'Vanilla) (IR.RemoteRelationshipField IR.UnpreparedValue))))
actionAsyncQuery objectTypes actionInfo = runMaybeT do
roleName <- asks getter
guard $ roleName == adminRoleName || roleName `Map.member` permissions
createdAtFieldParser <-
lift $ columnParser @('Postgres 'Vanilla) (ColumnScalar PGTimeStampTZ) (G.Nullability False)
errorsFieldParser <-
lift $ columnParser @('Postgres 'Vanilla) (ColumnScalar PGJSON) (G.Nullability True)
outputTypeName <- P.mkTypename $ unActionName actionName
let fieldName = unActionName actionName
description = G.Description <$> comment
actionIdInputField =
P.field idFieldName (Just idFieldDescription) actionIdParser
allFieldParsers actionOutputParser =
let idField = P.selection_ idFieldName (Just idFieldDescription) actionIdParser $> IR.AsyncId
createdAtField =
P.selection_
Name._created_at
(Just "the time at which this action was created")
createdAtFieldParser
$> IR.AsyncCreatedAt
errorsField =
P.selection_
Name._errors
(Just "errors related to the invocation")
errorsFieldParser
$> IR.AsyncErrors
outputField =
P.subselection_
Name._output
(Just "the output fields of this action")
actionOutputParser
<&> IR.AsyncOutput
in [idField, createdAtField, errorsField, outputField]
parserOutput <- case outputObject of
AOTObject aot -> do
actionOutputParser <- lift $ actionOutputFields outputType aot objectTypes
let desc = G.Description $ "fields of action: " <>> actionName
selectionSet =
P.selectionSet outputTypeName (Just desc) (allFieldParsers actionOutputParser)
<&> parsedSelectionsToFields IR.AsyncTypename
pure $ P.subselection fieldName description actionIdInputField selectionSet
AOTScalar ast -> do
let selectionSet = customScalarParser ast
pure $ P.selection fieldName description actionIdInputField selectionSet <&> (,[])
stringifyNum <- retrieve soStringifyNum
definitionsList <- lift $ mkDefinitionList outputObject
pure $
parserOutput
<&> \(idArg, fields) ->
IR.AnnActionAsyncQuery
{ _aaaqName = actionName,
_aaaqActionId = idArg,
_aaaqOutputType = _adOutputType definition,
_aaaqFields = fields,
_aaaqDefinitionList = definitionsList,
_aaaqStringifyNum = stringifyNum,
_aaaqForwardClientHeaders = forwardClientHeaders,
_aaaqSource = getActionSourceInfo outputObject
}
where
ActionInfo actionName (outputType, outputObject) definition permissions forwardClientHeaders comment = actionInfo
idFieldName = Name._id
idFieldDescription = "the unique id of an action"
getActionSourceInfo :: AnnotatedOutputType -> IR.ActionSourceInfo ('Postgres 'Vanilla)
getActionSourceInfo = \case
AOTObject aot -> fromMaybe IR.ASINoSource $ listToMaybe do
AnnotatedTypeRelationship {..} <- _aotRelationships aot
pure $ IR.ASISource _atrSource _atrSourceConfig
AOTScalar _ -> IR.ASINoSource
mkDefinitionList :: AnnotatedOutputType -> m [(PGCol, ScalarType ('Postgres 'Vanilla))]
mkDefinitionList = \case
AOTScalar _ -> pure []
AOTObject AnnotatedObjectType {..} -> do
let fieldReferences = Map.unions $ map _atrFieldMapping _aotRelationships
for (toList _aotFields) \ObjectFieldDefinition {..} ->
(unsafePGCol . G.unName . unObjectFieldName $ _ofdName,)
<$> case Map.lookup _ofdName fieldReferences of
Nothing -> fieldTypeToScalarType $ snd _ofdType
Just columnInfo -> pure $ unsafePGColumnToBackend $ ciType columnInfo
-- warning: we don't support other backends than Postgres for async queries;
-- here, we fail if we encounter a non-Postgres scalar type
fieldTypeToScalarType :: AnnotatedObjectFieldType -> m PGScalarType
fieldTypeToScalarType = \case
AOFTEnum _ -> pure PGText
AOFTObject _ -> pure PGJSON
AOFTScalar annotatedScalar -> case annotatedScalar of
ASTReusedScalar _ scalar ->
case AB.unpackAnyBackend @('Postgres 'Vanilla) scalar of
Just pgScalar -> pure $ unwrapScalar pgScalar
Nothing -> throw500 "encountered non-Postgres scalar in async query actions"
ASTCustom ScalarTypeDefinition {..} ->
pure $
if
| _stdName == idScalar -> PGText
| _stdName == intScalar -> PGInteger
| _stdName == floatScalar -> PGFloat
| _stdName == stringScalar -> PGText
| _stdName == boolScalar -> PGBoolean
| otherwise -> PGJSON
-- | Async action's unique id
actionIdParser :: MonadParse n => Parser 'Both n ActionId
actionIdParser = ActionId <$> P.uuid
actionOutputFields ::
forall r m n.
MonadBuildSchemaBase r m n =>
G.GType ->
AnnotatedObjectType ->
HashMap G.Name AnnotatedObjectType ->
m (Parser 'Output n (AnnotatedActionFields))
actionOutputFields outputType annotatedObject objectTypes = do
scalarOrEnumOrObjectFields <- forM (toList $ _aotFields annotatedObject) outputFieldParser
relationshipFields <- traverse relationshipFieldParser $ _aotRelationships annotatedObject
outputTypeName <- P.mkTypename $ unObjectTypeName $ _aotName annotatedObject
let allFieldParsers =
scalarOrEnumOrObjectFields
<> concat (catMaybes relationshipFields)
outputTypeDescription = _aotDescription annotatedObject
pure $
outputParserModifier outputType $
P.selectionSet outputTypeName outputTypeDescription allFieldParsers
<&> parsedSelectionsToFields IR.ACFExpression
where
outputParserModifier :: G.GType -> Parser 'Output n a -> Parser 'Output n a
outputParserModifier = \case
G.TypeNamed (G.Nullability True) _ -> P.nullableParser
G.TypeNamed (G.Nullability False) _ -> P.nonNullableParser
G.TypeList (G.Nullability True) t -> P.nullableParser . P.multiple . outputParserModifier t
G.TypeList (G.Nullability False) t -> P.nonNullableParser . P.multiple . outputParserModifier t
outputFieldParser ::
ObjectFieldDefinition (G.GType, AnnotatedObjectFieldType) ->
m (FieldParser n (AnnotatedActionField))
outputFieldParser (ObjectFieldDefinition name _ description (gType, objectFieldType)) = memoizeOn 'actionOutputFields (_aotName annotatedObject, name) do
case objectFieldType of
AOFTScalar def ->
wrapScalar $ customScalarParser def
AOFTEnum def ->
wrapScalar $ customEnumParser def
AOFTObject objectName -> do
def <- Map.lookup objectName objectTypes `onNothing` throw500 ("Custom type " <> objectName <<> " not found")
parser <- fmap (IR.ACFNestedObject fieldName) <$> actionOutputFields gType def objectTypes
pure $ P.subselection_ fieldName description parser
where
fieldName = unObjectFieldName name
wrapScalar parser =
pure $
P.wrapFieldParser gType (P.selection_ fieldName description parser)
$> IR.ACFScalar fieldName
relationshipFieldParser ::
AnnotatedTypeRelationship ->
m (Maybe [FieldParser n (AnnotatedActionField)])
relationshipFieldParser (AnnotatedTypeRelationship {..}) = runMaybeT do
relName <- hoistMaybe $ RelName <$> mkNonEmptyText (toTxt _atrName)
-- `lhsJoinFields` is a map of `x: y`
-- where 'x' is the 'reference name' of a join field, i.e, how a join
-- field is referenced in the remote relationships definition
-- while 'y' is the join field.
-- In case of custom types, they are pretty much the same.
-- In case of databases, 'y' could be a computed field with session variables etc.
let lhsJoinFields = Map.fromList [(FieldName $ G.unName k, k) | ObjectFieldName k <- Map.keys _atrFieldMapping]
joinMapping = Map.fromList $ do
(k, v) <- Map.toList _atrFieldMapping
let scalarType = case ciType v of
ColumnScalar scalar -> scalar
-- We don't currently allow enum types as fields of custom types so they should not appear here.
-- If we do allow them in future then they would be represented in Postgres as Text.
ColumnEnumReference _ -> PGText
pure (FieldName $ G.unName $ unObjectFieldName k, (scalarType, ciColumn v))
remoteFieldInfo =
RemoteFieldInfo
{ _rfiLHS = lhsJoinFields,
_rfiRHS =
RFISource $
AB.mkAnyBackend @('Postgres 'Vanilla) $
RemoteSourceFieldInfo
{ _rsfiName = relName,
_rsfiType = _atrType,
_rsfiSource = _atrSource,
_rsfiSourceConfig = _atrSourceConfig,
_rsfiSourceCustomization = _atrSourceCustomization,
_rsfiTable = tableInfoName _atrTableInfo,
_rsfiMapping = joinMapping
}
}
RemoteRelationshipParserBuilder remoteRelationshipField <- retrieve scRemoteRelationshipParserBuilder
remoteRelationshipFieldParsers <- MaybeT $ remoteRelationshipField remoteFieldInfo
pure $ remoteRelationshipFieldParsers <&> fmap (IR.ACFRemote . IR.ActionRemoteRelationshipSelect lhsJoinFields)
actionInputArguments ::
forall r m n.
MonadBuildSchemaBase r m n =>
HashMap G.Name AnnotatedInputType ->
[ArgumentDefinition (G.GType, AnnotatedInputType)] ->
m (InputFieldsParser n J.Value)
actionInputArguments nonObjectTypeMap arguments = do
argumentParsers <- for arguments $ \argument -> do
let ArgumentDefinition argumentName (gType, nonObjectType) argumentDescription = argument
name = unArgumentName argumentName
(name,) <$> argumentParser name argumentDescription gType nonObjectType
pure $ J.Object <$> inputFieldsToObject argumentParsers
where
inputFieldsToObject ::
[(G.Name, InputFieldsParser n (Maybe J.Value))] ->
InputFieldsParser n J.Object
inputFieldsToObject inputFields =
let mkTuple (name, parser) = fmap (K.fromText (G.unName name),) <$> parser
in KM.fromList . catMaybes <$> traverse mkTuple inputFields
argumentParser ::
G.Name ->
Maybe G.Description ->
G.GType ->
AnnotatedInputType ->
m (InputFieldsParser n (Maybe J.Value))
argumentParser name description gType nonObjectType = do
let mkResult :: forall k. ('Input P.<: k) => Parser k n J.Value -> InputFieldsParser n (Maybe J.Value)
mkResult = mkArgumentInputFieldParser name description gType
case nonObjectType of
-- scalar and enum parsers are not recursive and need not be memoized
NOCTScalar def -> pure $ mkResult $ customScalarParser def
NOCTEnum def -> pure $ mkResult $ customEnumParser def
-- input objects however may recursively contain one another
NOCTInputObject (InputObjectTypeDefinition (InputObjectTypeName objectName) objectDesc inputFields) ->
mkResult <$> memoizeOn 'actionInputArguments objectName do
inputFieldsParsers <- forM
(toList inputFields)
\(InputObjectFieldDefinition (InputObjectFieldName fieldName) fieldDesc (GraphQLType fieldType)) -> do
nonObjectFieldType <-
Map.lookup (G.getBaseType fieldType) nonObjectTypeMap
`onNothing` throw500 "object type for a field found in custom input object type"
(fieldName,) <$> argumentParser fieldName fieldDesc fieldType nonObjectFieldType
pure $
P.object objectName objectDesc $
J.Object <$> inputFieldsToObject inputFieldsParsers
mkArgumentInputFieldParser ::
forall m k.
(MonadParse m, 'Input P.<: k) =>
G.Name ->
Maybe G.Description ->
G.GType ->
Parser k m J.Value ->
InputFieldsParser m (Maybe J.Value)
mkArgumentInputFieldParser name description gType parser =
if G.isNullable gType
then P.fieldOptional name description modifiedParser
else Just <$> P.field name description modifiedParser
where
modifiedParser = parserModifier gType parser
parserModifier ::
G.GType -> Parser k m J.Value -> Parser k m J.Value
parserModifier = \case
G.TypeNamed nullable _ -> nullableModifier nullable
G.TypeList nullable ty ->
nullableModifier nullable . fmap J.toJSON . P.list . parserModifier ty
where
nullableModifier =
bool (fmap J.toJSON) (fmap J.toJSON . P.nullable) . G.unNullability
customScalarParser ::
MonadParse m =>
AnnotatedScalarType ->
Parser 'Both m J.Value
customScalarParser = \case
ASTCustom ScalarTypeDefinition {..} ->
if
| _stdName == idScalar -> J.toJSON <$> P.identifier
| _stdName == intScalar -> J.toJSON <$> P.int
| _stdName == floatScalar -> J.toJSON <$> P.float
| _stdName == stringScalar -> J.toJSON <$> P.string
| _stdName == boolScalar -> J.toJSON <$> P.boolean
| otherwise -> P.jsonScalar _stdName _stdDescription
ASTReusedScalar name backendScalarType ->
let schemaType = P.TNamed P.NonNullable $ P.Definition name Nothing Nothing P.TIScalar
backendScalarValidator =
AB.dispatchAnyBackend @Backend backendScalarType \(scalarType :: ScalarWrapper b) jsonInput -> do
-- We attempt to parse the value from JSON to validate it, but still
-- output it as JSON. On one hand this allows us to detect issues
-- ahead of time: if the value is not formatted correctly, we don't
-- send the action at all; on the other, it means we are at risk of
-- rejecting valid queries if our parser is more strict than the one
-- of the remote server. We do not parse scalars for remote servers
-- for that reason; we might want to reconsider this validation as
-- well.
void $
parseScalarValue @b (unwrapScalar scalarType) jsonInput
`onLeft` \e -> parseErrorWith ParseFailed $ qeError e
pure jsonInput
in P.Parser
{ pType = schemaType,
pParser = P.valueToJSON (P.toGraphQLType schemaType) >=> backendScalarValidator
}
customEnumParser ::
MonadParse m =>
EnumTypeDefinition ->
Parser 'Both m J.Value
customEnumParser (EnumTypeDefinition typeName description enumValues) =
let enumName = unEnumTypeName typeName
enumValueDefinitions =
enumValues <&> \enumValue ->
let valueName = G.unEnumValue $ _evdValue enumValue
in (,J.toJSON valueName) $
P.Definition
valueName
(_evdDescription enumValue)
Nothing
P.EnumValueInfo
in P.enum enumName description enumValueDefinitions