graphql-engine/server/src-lib/Hasura/GraphQL/Parser/Monad.hs
Samir Talwar 975b022b29 server/parsers: Reduce usages of "utils"-like functions.
This reduces the usage of "utils" modules in the parsers code, especially those that are simply re-exported from elsewhere, to facilitate extracting the parsers code into its own library.

It mostly inlines the imports that are re-exported from `Hasura.Prelude` and `Data.Parser.JSONPath`. It also removes references to `Data.*.Extended` modules. When necessary, it re-implements the functionality (which is typically trivial).

It does not tackle all external dependencies. I observed the following that will take more work:

- `Data.GADT.Compare.Extended`
- `Data.Text.Extended`
- `Hasura.Base.Error`
- `Hasura.RQL.Types.Common`
- `Hasura.Server.Utils`

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4964
GitOrigin-RevId: 54ad3c1b7a31f13e34340ebe9fcc36d0ad57b8bd
2022-07-06 07:56:35 +00:00

199 lines
7.7 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- | Monad transformers for GraphQL schema construction and query parsing.
module Hasura.GraphQL.Parser.Monad
( SchemaT,
runSchemaT,
Parse,
runParse,
ParseError (..),
)
where
import Control.Arrow ((<<<))
import Control.Monad.Except
import Control.Monad.Reader (MonadReader, ReaderT, mapReaderT)
import Control.Monad.State.Strict (MonadState (..), StateT, evalStateT)
import Data.Aeson (JSONPath)
import Data.Dependent.Map (DMap)
import Data.Dependent.Map qualified as DM
import Data.GADT.Compare.Extended
import Data.IORef
import Data.Kind qualified as K
import Data.Proxy (Proxy (..))
import Data.Text (Text)
import Hasura.Base.Error
import Hasura.GraphQL.Parser.Class
import Language.Haskell.TH qualified as TH
import System.IO.Unsafe (unsafeInterleaveIO)
import Type.Reflection (Typeable, typeRep, (:~:) (..))
import Prelude
-- Disable custom prelude warnings in preparation for extracting this module into a separate package.
{-# ANN module ("HLint: ignore Use onLeft" :: String) #-}
-- -------------------------------------------------------------------------------------------------
-- schema construction
newtype SchemaT n m a = SchemaT
{ unSchemaT :: StateT (DMap ParserId (ParserById n)) m a
}
deriving (Functor, Applicative, Monad, MonadError e, MonadReader r)
runSchemaT :: forall m n a. Monad m => SchemaT n m a -> m a
runSchemaT = flip evalStateT mempty . unSchemaT
-- | see Note [SchemaT requires MonadIO]
instance
(MonadIO m, MonadParse n) =>
MonadSchema n (SchemaT n m)
where
memoizeOn name key buildParser = SchemaT do
let parserId = ParserId name key
parsersById <- get
case DM.lookup parserId parsersById of
Just (ParserById parser) -> pure parser
Nothing -> do
-- We manually do eager blackholing here using a MutVar rather than
-- relying on MonadFix and ordinary thunk blackholing. Why? A few
-- reasons:
--
-- 1. We have more control. We arent at the whims of whatever
-- MonadFix instance happens to get used.
--
-- 2. We can be more precise. GHCs lazy blackholing doesnt always
-- kick in when youd expect.
--
-- 3. We can provide more useful error reporting if things go wrong.
-- Most usefully, we can include a HasCallStack source location.
cell <- liftIO $ newIORef Nothing
-- We use unsafeInterleaveIO here, which sounds scary, but
-- unsafeInterleaveIO is actually far more safe than unsafePerformIO.
-- unsafeInterleaveIO just defers the execution of the action until its
-- result is needed, adding some laziness.
--
-- That laziness can be dangerous if the action has side-effects, since
-- the point at which the effect is performed can be unpredictable. But
-- this action just reads, never writes, so that isnt a concern.
parserById <-
liftIO $
unsafeInterleaveIO $
readIORef cell >>= \case
Just parser -> pure $ ParserById parser
Nothing ->
error $
unlines
[ "memoize: parser was forced before being fully constructed",
" parser constructor: " ++ TH.pprint name
]
put $! DM.insert parserId parserById parsersById
parser <- unSchemaT buildParser
liftIO $ writeIORef cell (Just parser)
pure parser
instance
(MonadIO m, MonadParse n) =>
MonadSchema n (ReaderT a (SchemaT n m))
where
memoizeOn name key = mapReaderT (memoizeOn name key)
{- Note [SchemaT requires MonadIO]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MonadSchema instance for SchemaT requires MonadIO, which is unsatisfying.
The only reason the constraint is needed is to implement knot-tying via IORefs
(see Note [Tying the knot] in Hasura.GraphQL.Parser.Class), which really only
requires the power of ST. Using ST would be much nicer, since we could discharge
the burden locally, but unfortunately we also want to use MonadUnique, which
is handled by IO in the end.
This means that we need IO at the base of our monad, so to use STRefs, wed need
a hypothetical STT transformer (i.e. a monad transformer version of ST). But
such a thing isnt safe in general, since reentrant monads like ListT or ContT
would incorrectly share state between the different threads of execution.
In theory, this can be resolved by using something like Vault (from the vault
package) to create “splittable” sets of variable references. That would allow
you to create a transformer with an STRef-like interface that works over any
arbitrary monad. However, while the interface would be safe, the implementation
of such an abstraction requires unsafe primitives, and to the best of my
knowledge no such transformer exists in any existing libraries.
So we decide it isnt worth the trouble and just use MonadIO. If `eff` ever pans
out, it should be able to support this more naturally, so we can fix it then. -}
-- | A key used to distinguish calls to 'memoize'd functions. The 'TH.Name'
-- distinguishes calls to completely different parsers, and the @a@ value
-- records the arguments.
data ParserId (t :: ((K.Type -> K.Type) -> K.Type -> K.Type, K.Type)) where
ParserId :: (Ord a, Typeable p, Typeable a, Typeable b) => TH.Name -> a -> ParserId '(p, b)
instance GEq ParserId where
geq
(ParserId name1 (arg1 :: a1) :: ParserId t1)
(ParserId name2 (arg2 :: a2) :: ParserId t2)
| _ :: Proxy '(p1, b1) <- Proxy @t1,
_ :: Proxy '(p2, b2) <- Proxy @t2,
name1 == name2,
Just Refl <- typeRep @a1 `geq` typeRep @a2,
arg1 == arg2,
Just Refl <- typeRep @p1 `geq` typeRep @p2,
Just Refl <- typeRep @b1 `geq` typeRep @b2 =
Just Refl
| otherwise = Nothing
instance GCompare ParserId where
gcompare
(ParserId name1 (arg1 :: a1) :: ParserId t1)
(ParserId name2 (arg2 :: a2) :: ParserId t2)
| _ :: Proxy '(p1, b1) <- Proxy @t1,
_ :: Proxy '(p2, b2) <- Proxy @t2 =
strengthenOrdering (compare name1 name2)
`extendGOrdering` gcompare (typeRep @a1) (typeRep @a2)
`extendGOrdering` strengthenOrdering (compare arg1 arg2)
`extendGOrdering` gcompare (typeRep @p1) (typeRep @p2)
`extendGOrdering` gcompare (typeRep @b1) (typeRep @b2)
`extendGOrdering` GEQ
-- | A newtype wrapper around a 'Parser' that rearranges the type parameters
-- so that it can be indexed by a 'ParserId' in a 'DMap'.
--
-- This is really just a single newtype, but its implemented as a data family
-- because GHC doesnt allow ordinary datatype declarations to pattern-match on
-- type parameters, and we want to match on the tuple.
data family ParserById (m :: K.Type -> K.Type) (a :: ((K.Type -> K.Type) -> K.Type -> K.Type, K.Type))
newtype instance ParserById m '(p, a) = ParserById (p m a)
-- -------------------------------------------------------------------------------------------------
-- query parsing
newtype Parse a = Parse
{ unParse :: Except ParseError a
}
deriving (Functor, Applicative, Monad)
runParse ::
MonadError QErr m =>
Parse a ->
m a
runParse parse =
either reportParseErrors pure (runExcept <<< unParse $ parse)
instance MonadParse Parse where
withKey key = Parse . withExceptT (\pe -> pe {pePath = key : pePath pe}) . unParse
parseErrorWith code text = Parse $ do
throwError $ ParseError {peCode = code, pePath = [], peMessage = text}
data ParseError = ParseError
{ pePath :: JSONPath,
peMessage :: Text,
peCode :: Code
}
reportParseErrors ::
MonadError QErr m =>
ParseError ->
m a
reportParseErrors (ParseError {pePath, peMessage, peCode}) =
throwError (err400 peCode peMessage) {qePath = pePath}