graphql-engine/server/src-lib/Hasura/RQL/DDL/Schema/Cache/Fields.hs
David Overton 346804fc67 Support nested object fields in DC API and use this to implement nest…
## Description

This change adds support for nested object fields in HGE IR and Schema Cache, the Data Connectors backend and API, and the MongoDB agent.

### Data Connector API changes

- The `/schema` endpoint response now includes an optional set of GraphQL type definitions. Table column types can refer to these definitions by name.
- Queries can now include a new field type `object` which contains a column name and a nested query. This allows querying into a nested object within a field.

### MongoDB agent changes

- Add support for querying into nested documents using the new `object` field type.

### HGE changes

- The `Backend` type class has a new type family `XNestedObjects b` which controls whether or not a backend supports querying into nested objects. This is currently enabled only for the `DataConnector` backend.
- For backends that support nested objects, the `FieldInfo` type gets a new constructor `FINestedObject`, and the `AnnFieldG` type gets a new constructor `AFNestedObject`.
- If the DC `/schema` endpoint returns any custom GraphQL type definitions they are stored in the `TableInfo` for each table in the source.
- During schema cache building, the function `addNonColumnFields` will check whether any column types match custom GraphQL object types stored in the `TableInfo`. If so, they are converted into `FINestedObject` instead of `FIColumn` in the `FieldInfoMap`.
- When building the `FieldParser`s from `FieldInfo` (function `fieldSelection`) any `FINestedObject` fields are converted into nested object parsers returning `AFNestedObject`.
- The `DataConnector` query planner converts `AFNestedObject` fields into `object` field types in the query sent to the agent.

## Limitations

### HGE not yet implemented:
- Support for nested arrays
- Support for nested objects/arrays in mutations
- Support for nested objects/arrays in order-by
- Support for filters (`where`) in nested objects/arrays
- Support for adding custom GraphQL types via track table metadata API
- Support for interface and union types
- Tests for nested objects

### Mongo agent not yet implemented:

- Generate nested object types from validation schema
- Support for aggregates
- Support for order-by
- Configure agent port
- Build agent in CI
- Agent tests for nested objects and MongoDB agent

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7844
GitOrigin-RevId: aec9ec1e4216293286a68f9b1af6f3f5317db423
2023-04-11 01:30:37 +00:00

331 lines
14 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Hasura.RQL.DDL.Schema.Cache.Fields (addNonColumnFields) where
import Data.Aeson
import Data.Align (align)
import Data.HashMap.Strict.Extended qualified as M
import Data.HashSet qualified as HS
import Data.Sequence qualified as Seq
import Data.Text.Extended
import Data.These (These (..))
import Hasura.Base.Error
import Hasura.Function.API
import Hasura.Function.Cache
import Hasura.Prelude
import Hasura.RQL.DDL.ComputedField
import Hasura.RQL.DDL.Relationship
import Hasura.RQL.DDL.RemoteRelationship
import Hasura.RQL.DDL.Schema.Cache.Common
import Hasura.RQL.Types.Backend
import Hasura.RQL.Types.Column
import Hasura.RQL.Types.Common
import Hasura.RQL.Types.ComputedField
import Hasura.RQL.Types.Metadata
import Hasura.RQL.Types.Metadata.Backend
import Hasura.RQL.Types.Metadata.Object
import Hasura.RQL.Types.Relationships.Local
import Hasura.RQL.Types.Relationships.Remote
import Hasura.RQL.Types.SchemaCache
import Hasura.RQL.Types.SchemaCache.Build
import Hasura.RQL.Types.SchemaCacheTypes
import Hasura.RQL.Types.Table
import Hasura.SQL.AnyBackend qualified as AB
import Language.GraphQL.Draft.Syntax qualified as G
addNonColumnFields ::
forall b m.
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
BackendMetadata b
) =>
HashMap SourceName (AB.AnyBackend PartiallyResolvedSource) ->
SourceName ->
HashMap G.Name (TableObjectType b) ->
HashMap (TableName b) (TableCoreInfoG b (ColumnInfo b) (ColumnInfo b)) ->
FieldInfoMap (ColumnInfo b) ->
PartiallyResolvedRemoteSchemaMap ->
DBFunctionsMetadata b ->
NonColumnTableInputs b ->
m (FieldInfoMap (FieldInfo b))
addNonColumnFields allSources source customObjectTypes rawTableInfos columns remoteSchemaMap pgFunctions NonColumnTableInputs {..} = do
objectRelationshipInfos <-
buildInfoMapPreservingMetadataM
_rdName
(mkRelationshipMetadataObject @b ObjRel source _nctiTable)
(buildObjectRelationship (_tciForeignKeys <$> rawTableInfos) source _nctiTable)
_nctiObjectRelationships
arrayRelationshipInfos <-
buildInfoMapPreservingMetadataM
_rdName
(mkRelationshipMetadataObject @b ArrRel source _nctiTable)
(buildArrayRelationship (_tciForeignKeys <$> rawTableInfos) source _nctiTable)
_nctiArrayRelationships
let relationshipInfos = objectRelationshipInfos <> arrayRelationshipInfos
computedFieldInfos <-
buildInfoMapPreservingMetadataM
_cfmName
(mkComputedFieldMetadataObject source _nctiTable)
(buildComputedField (HS.fromList $ M.keys rawTableInfos) (HS.fromList $ map ciColumn $ M.elems columns) source pgFunctions _nctiTable)
_nctiComputedFields
-- the fields that can be used for defining join conditions to other sources/remote schemas:
-- 1. all columns
-- 2. computed fields which don't expect arguments other than the table row and user session
let lhsJoinFields =
let columnFields = columns <&> \columnInfo -> JoinColumn (ciColumn columnInfo) (ciType columnInfo)
computedFields = M.fromList $
flip mapMaybe (M.toList computedFieldInfos) $
\(cfName, (ComputedFieldInfo {..}, _)) -> do
scalarType <- case computedFieldReturnType @b _cfiReturnType of
ReturnsScalar ty -> pure ty
ReturnsTable {} -> Nothing
ReturnsOthers {} -> Nothing
let ComputedFieldFunction {..} = _cfiFunction
case toList _cffInputArgs of
[] ->
pure $
(fromComputedField cfName,) $
JoinComputedField $
ScalarComputedField
_cfiXComputedFieldInfo
_cfiName
_cffName
_cffComputedFieldImplicitArgs
scalarType
_ -> Nothing
in M.union columnFields computedFields
rawRemoteRelationshipInfos <-
buildInfoMapPreservingMetadataM
_rrName
(mkRemoteRelationshipMetadataObject @b source _nctiTable)
(buildRemoteRelationship allSources lhsJoinFields remoteSchemaMap source _nctiTable)
_nctiRemoteRelationships
let relationshipFields = mapKeys fromRel relationshipInfos
computedFieldFields = mapKeys fromComputedField computedFieldInfos
remoteRelationshipFields = mapKeys fromRemoteRelationship rawRemoteRelationshipInfos
-- Validation phase
-- First, check for conflicts between non-column fields, since we can raise a better error
-- message in terms of the two metadata objects that define them.
let relationshipAndComputedFields = align relationshipFields computedFieldFields
step1 <- M.traverseWithKey (noFieldConflicts FIRelationship FIComputedField) relationshipAndComputedFields
-- Second, align with remote relationship fields
let nonColumnFields = align (catMaybes step1) remoteRelationshipFields
step2 <- M.traverseWithKey (noFieldConflicts id FIRemoteRelationship) nonColumnFields
-- Next, check for conflicts with custom field names. This is easiest to do before merging with
-- the column info itself because we have access to the information separately, and custom field
-- names are not currently stored as a separate map (but maybe should be!).
step3 <- noCustomFieldConflicts (catMaybes step2)
-- Finally, check for conflicts with the columns themselves.
let allFields = align columns (catMaybes step3)
traverse noColumnConflicts allFields
where
noFieldConflicts this that fieldName = \case
This (thisField, metadata) -> pure $ Just (this thisField, metadata)
That (thatField, metadata) -> pure $ Just (that thatField, metadata)
These (_, thisMetadata) (_, thatMetadata) -> do
tell $
Seq.singleton $
Left $
ConflictingObjects
("conflicting definitions for field " <>> fieldName)
[thisMetadata, thatMetadata]
pure Nothing
noCustomFieldConflicts nonColumnFields = do
let columnsByGQLName = mapFromL ciName $ M.elems columns
for nonColumnFields \(fieldInfo, metadata) -> withRecordInconsistencyM metadata do
for_ (fieldInfoGraphQLNames fieldInfo) \fieldGQLName ->
case M.lookup fieldGQLName columnsByGQLName of
-- Only raise an error if the GQL name isnt the same as the Postgres column name.
-- If they are the same, `noColumnConflicts` will catch it, and it will produce a
-- more useful error message.
Just columnInfo
| toTxt (ciColumn columnInfo) /= G.unName fieldGQLName ->
throw400 AlreadyExists $
"field definition conflicts with custom field name for postgres column "
<>> ciColumn columnInfo
_ -> return ()
return (fieldInfo, metadata)
noColumnConflicts = \case
This columnInfo -> pure $ columnInfoToFieldInfo customObjectTypes columnInfo
That (fieldInfo, _) -> pure $ fieldInfo
These columnInfo (_, fieldMetadata) -> do
recordInconsistencyM Nothing fieldMetadata "field definition conflicts with postgres column"
pure $ FIColumn columnInfo
mkRelationshipMetadataObject ::
forall b a.
(ToJSON a, Backend b) =>
RelType ->
SourceName ->
TableName b ->
RelDef a ->
MetadataObject
mkRelationshipMetadataObject relType source table relDef =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTORel (_rdName relDef) relType
in MetadataObject objectId $ toJSON $ WithTable @b source table relDef
buildObjectRelationship ::
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
Backend b
) =>
HashMap (TableName b) (HashSet (ForeignKey b)) ->
SourceName ->
TableName b ->
ObjRelDef b ->
m (Maybe (RelInfo b))
buildObjectRelationship fkeysMap source table relDef = do
let buildRelInfo def = objRelP2Setup source table fkeysMap def
buildRelationship source table buildRelInfo ObjRel relDef
buildArrayRelationship ::
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
Backend b
) =>
HashMap (TableName b) (HashSet (ForeignKey b)) ->
SourceName ->
TableName b ->
ArrRelDef b ->
m (Maybe (RelInfo b))
buildArrayRelationship fkeysMap source table relDef = do
let buildRelInfo def = arrRelP2Setup fkeysMap source table def
buildRelationship source table buildRelInfo ArrRel relDef
buildRelationship ::
forall m b a.
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
ToJSON a,
Backend b
) =>
SourceName ->
TableName b ->
(RelDef a -> Either QErr (RelInfo b, Seq SchemaDependency)) ->
RelType ->
RelDef a ->
m (Maybe (RelInfo b))
buildRelationship source table buildRelInfo relType relDef = do
let relName = _rdName relDef
metadataObject = mkRelationshipMetadataObject @b relType source table relDef
schemaObject =
SOSourceObj source $
AB.mkAnyBackend $
SOITableObj @b table $
TORel relName
addRelationshipContext e = "in relationship " <> relName <<> ": " <> e
withRecordInconsistencyM metadataObject $ do
modifyErr (addTableContext @b table . addRelationshipContext) $ do
(info, dependencies) <- liftEither $ buildRelInfo relDef
recordDependenciesM metadataObject schemaObject dependencies
return info
mkComputedFieldMetadataObject ::
forall b.
(Backend b) =>
SourceName ->
TableName b ->
ComputedFieldMetadata b ->
MetadataObject
mkComputedFieldMetadataObject source table ComputedFieldMetadata {..} =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTOComputedField _cfmName
definition = AddComputedField @b source table _cfmName _cfmDefinition _cfmComment
in MetadataObject objectId (toJSON definition)
buildComputedField ::
forall b m.
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
BackendMetadata b
) =>
HashSet (TableName b) ->
HashSet (Column b) ->
SourceName ->
DBFunctionsMetadata b ->
TableName b ->
ComputedFieldMetadata b ->
m (Maybe (ComputedFieldInfo b))
buildComputedField trackedTableNames tableColumns source pgFunctions table cf@ComputedFieldMetadata {..} = do
let addComputedFieldContext e = "in computed field " <> _cfmName <<> ": " <> e
function = computedFieldFunction @b _cfmDefinition
withRecordInconsistencyM (mkComputedFieldMetadataObject source table cf) $
modifyErr (addTableContext @b table . addComputedFieldContext) $ do
funcDefs <-
onNothing
(M.lookup function pgFunctions)
(throw400 NotExists $ "no such function exists: " <>> function)
rawfi <- getSingleUniqueFunctionOverload @b (computedFieldFunction @b _cfmDefinition) funcDefs
buildComputedFieldInfo trackedTableNames table tableColumns _cfmName _cfmDefinition rawfi _cfmComment
mkRemoteRelationshipMetadataObject ::
forall b.
Backend b =>
SourceName ->
TableName b ->
RemoteRelationship ->
MetadataObject
mkRemoteRelationshipMetadataObject source table RemoteRelationship {..} =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTORemoteRelationship _rrName
in MetadataObject objectId $
toJSON $
CreateFromSourceRelationship @b source table _rrName _rrDefinition
-- | This is a "thin" wrapper around 'buildRemoteFieldInfo', which only knows
-- how to construct dependencies on the RHS of the join condition, so the
-- dependencies on the remote relationship on the LHS entity are computed here
buildRemoteRelationship ::
forall b m.
( MonadWriter (Seq (Either InconsistentMetadata MetadataDependency)) m,
BackendMetadata b
) =>
HashMap SourceName (AB.AnyBackend PartiallyResolvedSource) ->
M.HashMap FieldName (DBJoinField b) ->
PartiallyResolvedRemoteSchemaMap ->
SourceName ->
TableName b ->
RemoteRelationship ->
m (Maybe (RemoteFieldInfo (DBJoinField b)))
buildRemoteRelationship allSources allColumns remoteSchemaMap source table rr@RemoteRelationship {..} = do
let metadataObject = mkRemoteRelationshipMetadataObject @b source table rr
schemaObj =
SOSourceObj source $
AB.mkAnyBackend $
SOITableObj @b table $
TORemoteRel _rrName
addRemoteRelationshipContext e = "in remote relationship " <> _rrName <<> ": " <> e
withRecordInconsistencyM metadataObject $
modifyErr (addTableContext @b table . addRemoteRelationshipContext) $ do
(remoteField, rhsDependencies) <-
buildRemoteFieldInfo (tableNameToLHSIdentifier @b table) allColumns rr allSources remoteSchemaMap
let lhsDependencies =
-- a direct dependency on the table on which this is defined
SchemaDependency (SOSourceObj source $ AB.mkAnyBackend $ SOITable @b table) DRTable
-- the relationship is also dependent on all the lhs
-- columns that are used in the join condition
: flip map (M.elems $ _rfiLHS remoteField) \case
JoinColumn column _ ->
-- TODO: shouldn't this be DRColumn??
mkColDep @b DRRemoteRelationship source table column
JoinComputedField computedFieldInfo ->
mkComputedFieldDep @b DRRemoteRelationship source table $ _scfName computedFieldInfo
-- Here is the essence of the function: construct dependencies on the RHS
-- of the join condition.
recordDependenciesM metadataObject schemaObj (Seq.fromList lhsDependencies <> rhsDependencies)
return remoteField