graphql-engine/server/src-lib/Data/HashMap/Strict/Extended.hs
David Overton 9921823915 GDC-189 custom aggregations
>

## Description
->

This PR allows DC agents to define custom aggregate functions for their scalar types.

### Related Issues
->

GDC-189

### Solution and Design
>

We added a new property `aggregate_functions` to the scalar types capabilities. This allows the agent author to specify a set of aggregate functions supported by each scalar type, along with the function's result type.

During GraphQL schema generation, the custom aggregate functions are available via a new method `getCustomAggregateOperators` on the `Backend` type class.
Custom functions are merged with the builtin aggregate functions when building GraphQL schemas for table aggregate fields and for `order_by` operators on array relations.

### Steps to test and verify
>

• Codec tests for aggregate function capabilities have been added to the unit tests.
• Some custom aggregate operators have been added to the reference agent and are used in a new test in `api-tests`.

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6199
GitOrigin-RevId: e9c0d1617af93847c1493671fdbb794f573bde0c
2022-10-27 00:44:06 +00:00

124 lines
4.0 KiB
Haskell

module Data.HashMap.Strict.Extended
( module M,
fromListOn,
groupOn,
groupOnNE,
differenceOn,
insertWithM,
isInverseOf,
unionWithM,
unionsAll,
unionsWith,
homogenise,
catMaybes,
)
where
import Control.Monad (foldM)
import Data.Foldable qualified as F
import Data.Function (on)
import Data.HashMap.Strict as M
import Data.HashSet (HashSet)
import Data.HashSet qualified as S
import Data.Hashable (Hashable)
import Data.List qualified as L
import Data.List.NonEmpty (NonEmpty (..))
import Prelude
fromListOn :: (Eq k, Hashable k) => (v -> k) -> [v] -> HashMap k v
fromListOn f = M.fromList . Prelude.map (\v -> (f v, v))
-- | Given a 'Foldable' sequence of values and a function that extracts a key from each value,
-- returns a 'HashMap' that maps each key to a list of all values in the sequence for which the
-- given function produced it.
--
-- >>> groupOn (take 1) ["foo", "bar", "baz"]
-- fromList [("f", ["foo"]), ("b", ["bar", "baz"])]
groupOn :: (Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> HashMap k [v]
groupOn f = fmap F.toList . groupOnNE f
groupOnNE ::
(Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> HashMap k (NonEmpty v)
groupOnNE f =
Prelude.foldr
(\v -> M.alter (Just . (v :|) . maybe [] F.toList) (f v))
M.empty
differenceOn ::
(Eq k, Hashable k, Foldable t) => (v -> k) -> t v -> t v -> HashMap k v
differenceOn f = M.difference `on` (fromListOn f . F.toList)
-- | Monadic version of https://hackage.haskell.org/package/unordered-containers-0.2.18.0/docs/Data-HashMap-Internal.html#v:insertWith
insertWithM :: (Monad m, Hashable k, Eq k) => (v -> v -> m v) -> k -> v -> HashMap k v -> m (HashMap k v)
insertWithM f k v m =
sequence $
M.insertWith
( \a b -> do
x <- a
y <- b
f x y
)
k
(return v)
(return <$> m)
-- | Determines whether the left-hand-side and the right-hand-side are inverses of each other.
--
-- More specifically, for two maps @A@ and @B@, 'isInverseOf' is satisfied when both of the
-- following are true:
-- 1. @∀ key ∈ A. A[key] ∈ B ∧ B[A[key]] == key@
-- 2. @∀ key ∈ B. B[key] ∈ A ∧ A[B[key]] == key@
isInverseOf ::
(Eq k, Hashable k, Eq v, Hashable v) => HashMap k v -> HashMap v k -> Bool
lhs `isInverseOf` rhs = lhs `invertedBy` rhs && rhs `invertedBy` lhs
where
invertedBy ::
forall s t.
(Eq s, Eq t, Hashable t) =>
HashMap s t ->
HashMap t s ->
Bool
a `invertedBy` b = and $ do
(k, v) <- M.toList a
pure $ M.lookup v b == Just k
-- | The union of two maps.
--
-- If a key occurs in both maps, the provided function (first argument) will be
-- used to compute the result. Unlike 'unionWith', 'unionWithM' performs the
-- computation in an arbitratry monad.
unionWithM ::
(Monad m, Eq k, Hashable k) =>
(k -> v -> v -> m v) ->
HashMap k v ->
HashMap k v ->
m (HashMap k v)
unionWithM f m1 m2 = foldM step m1 (M.toList m2)
where
step m (k, new) = case M.lookup k m of
Nothing -> pure $ M.insert k new m
Just old -> do
combined <- f k new old
pure $ M.insert k combined m
-- | Like 'M.unions', but keeping all elements in the result.
unionsAll ::
(Eq k, Hashable k, Foldable t) => t (HashMap k v) -> HashMap k (NonEmpty v)
unionsAll = F.foldl' (\a b -> M.unionWith (<>) a (fmap (:| []) b)) M.empty
-- | Like 'M.unions', but combining elements
unionsWith ::
(Eq k, Hashable k, Foldable t) => (v -> v -> v) -> t (HashMap k v) -> HashMap k v
unionsWith f = F.foldl' (M.unionWith f) M.empty
-- | Homogenise maps, such that all maps range over the full set of
-- keys, inserting a default value as needed.
homogenise :: (Hashable a, Eq a) => b -> [HashMap a b] -> (HashSet a, [HashMap a b])
homogenise defaultValue maps =
let ks = S.unions $ L.map M.keysSet maps
defaults = M.fromList [(k, defaultValue) | k <- S.toList ks]
in (ks, L.map (<> defaults) maps)
catMaybes :: HashMap k (Maybe v) -> HashMap k v
catMaybes = mapMaybe id