graphql-engine/server/src-lib/Hasura/RQL/DDL/Schema/Cache/Fields.hs
Auke Booij b535257251 Avoid Arrows by interpreting monads
TL;DR
---

We go from this:
```haskell
  (|
    withRecordInconsistency
      ( (|
          modifyErrA
            ( do
                (info, dependencies) <- liftEitherA -< buildRelInfo relDef
                recordDependencies -< (metadataObject, schemaObject, dependencies)
                returnA -< info
            )
        |) (addTableContext @b table . addRelationshipContext)
      )
    |) metadataObject
```
to this:
```haskell
  withRecordInconsistencyM metadataObject $ do
    modifyErr (addTableContext @b table . addRelationshipContext) $ do
      (info, dependencies) <- liftEither $ buildRelInfo relDef
      recordDependenciesM metadataObject schemaObject dependencies
      return info
```

Background
---
We use Haskell's `Arrows` language extension to gain some syntactic sugar when working with `Arrow`s. `Arrow`s are a programming abstraction comparable to `Monad`s.

Unfortunately the syntactic sugar provided by this language extension is not very sweet.

This PR shows how we can sometimes avoid using `Arrow`s altogether, without loss of functionality or correctness. It is a demo of a technique that can be used to cut down the amount of `Arrows`-based code in our codebase by about half.

Approach
---

Although _in general_ not every `Monad` is an `Arrow`, specific `Arrow` instantiations are exactly as powerful as their `Monad` equivalents. Otherwise they wouldn't be very equivalent, would they?

Just like `liftEither` interprets the `Either e` monad into an arbitrary monad implementing `MonadError e`, we add `interpA` which interprets certain concrete monads such as `Writer w` into specific arrows, e.g. ones satisfying `ArrowWriter w`. This means that the part of the code that only uses such interpretable effects can be written _monadically_, and then used in _arrow_ constructions down the line.

This approach cannot be used for arrow effects which do not have a monadic equivalent. In our codebase, the only instance of this is `ArrowCache m`, implemented by the `Rule m` arrow. So code written with `ArrowCache m` in the context cannot be rewritten monadically using this technique.

See also
---
- #1827
- #2210

PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3543
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
GitOrigin-RevId: eb79619c95f7a571bce99bc144ce42ee65d08505
2022-02-22 18:09:50 +00:00

355 lines
14 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# LANGUAGE Arrows #-}
module Hasura.RQL.DDL.Schema.Cache.Fields (addNonColumnFields) where
import Control.Arrow.Extended
import Control.Arrow.Interpret
import Control.Lens ((^.), _3, _4)
import Data.Aeson
import Data.Align (align)
import Data.HashMap.Strict.Extended qualified as M
import Data.HashSet qualified as HS
import Data.Sequence qualified as Seq
import Data.Text.Extended
import Data.These (These (..))
import Hasura.Base.Error
import Hasura.Incremental qualified as Inc
import Hasura.Prelude
import Hasura.RQL.DDL.ComputedField
import Hasura.RQL.DDL.Relationship
import Hasura.RQL.DDL.RemoteRelationship
import Hasura.RQL.DDL.Schema.Cache.Common
import Hasura.RQL.DDL.Schema.Function
import Hasura.RQL.Types
import Hasura.SQL.AnyBackend qualified as AB
import Language.GraphQL.Draft.Syntax qualified as G
addNonColumnFields ::
forall b arr m.
( ArrowChoice arr,
Inc.ArrowDistribute arr,
ArrowWriter (Seq CollectedInfo) arr,
ArrowKleisli m arr,
MonadError QErr m,
BackendMetadata b
) =>
( HashMap SourceName (AB.AnyBackend PartiallyResolvedSource),
SourceName,
HashMap (TableName b) (TableCoreInfoG b (ColumnInfo b) (ColumnInfo b)),
FieldInfoMap (ColumnInfo b),
RemoteSchemaMap,
DBFunctionsMetadata b,
NonColumnTableInputs b
)
`arr` FieldInfoMap (FieldInfo b)
addNonColumnFields =
proc
( allSources,
source,
rawTableInfo,
columns,
remoteSchemaMap,
pgFunctions,
NonColumnTableInputs {..}
)
-> do
objectRelationshipInfos <-
buildInfoMapPreservingMetadata
(_rdName . (^. _3))
(\(s, t, c) -> mkRelationshipMetadataObject @b ObjRel (s, t, c))
buildObjectRelationship
-<
(_tciForeignKeys <$> rawTableInfo, map (source,_nctiTable,) _nctiObjectRelationships)
arrayRelationshipInfos <-
buildInfoMapPreservingMetadata
(_rdName . (^. _3))
(mkRelationshipMetadataObject @b ArrRel)
buildArrayRelationship
-<
(_tciForeignKeys <$> rawTableInfo, map (source,_nctiTable,) _nctiArrayRelationships)
let relationshipInfos = objectRelationshipInfos <> arrayRelationshipInfos
computedFieldInfos <-
buildInfoMapPreservingMetadata
(_cfmName . (^. _4))
(\(s, _, t, c) -> mkComputedFieldMetadataObject (s, t, c))
( proc (a, (b, c, d, e)) -> do
o <- interpA @(WriterT _ Identity) -< buildComputedField a b c d e
arrM liftEither -< o
)
-<
(HS.fromList $ M.keys rawTableInfo, map (source,pgFunctions,_nctiTable,) _nctiComputedFields)
-- the fields that can be used for defining join conditions to other sources/remote schemas:
-- 1. all columns
-- 2. computed fields which don't expect arguments other than the table row and user session
let lhsJoinFields =
let columnFields = columns <&> \columnInfo -> JoinColumn (ciColumn columnInfo) (ciType columnInfo)
computedFields = M.fromList $
flip mapMaybe (M.toList computedFieldInfos) $
\(cfName, (ComputedFieldInfo {..}, _)) -> do
scalarType <- case _cfiReturnType of
CFRScalar ty -> pure ty
CFRSetofTable {} -> Nothing
let ComputedFieldFunction {..} = _cfiFunction
case toList _cffInputArgs of
[] ->
pure $
(fromComputedField cfName,) $
JoinComputedField $
ScalarComputedField
_cfiXComputedFieldInfo
_cfiName
_cffName
_cffTableArgument
_cffSessionArgument
scalarType
_ -> Nothing
in M.union columnFields computedFields
rawRemoteRelationshipInfos <-
buildInfoMapPreservingMetadata
(_rrName . (^. _3))
(mkRemoteRelationshipMetadataObject @b)
( proc ((a, b, c), d) -> do
o <- interpA @(WriterT _ Identity) -< buildRemoteRelationship a b c d
arrM liftEither -< o
)
-<
((allSources, lhsJoinFields, remoteSchemaMap), map (source,_nctiTable,) _nctiRemoteRelationships)
let relationshipFields = mapKeys fromRel relationshipInfos
computedFieldFields = mapKeys fromComputedField computedFieldInfos
remoteRelationshipFields = mapKeys fromRemoteRelationship rawRemoteRelationshipInfos
-- First, check for conflicts between non-column fields, since we can raise a better error
-- message in terms of the two metadata objects that define them.
(align relationshipFields computedFieldFields >- returnA)
>-> (| Inc.keyed (\fieldName fields -> (fieldName, fields) >- noFieldConflicts FIRelationship FIComputedField) |)
-- Second, align with remote relationship fields
>-> (\fields -> align (M.catMaybes fields) remoteRelationshipFields >- returnA)
>-> (| Inc.keyed (\fieldName fields -> (fieldName, fields) >- noFieldConflicts id FIRemoteRelationship) |)
-- Next, check for conflicts with custom field names. This is easiest to do before merging with
-- the column info itself because we have access to the information separately, and custom field
-- names are not currently stored as a separate map (but maybe should be!).
>-> (\fields -> (columns, M.catMaybes fields) >- noCustomFieldConflicts)
-- Finally, check for conflicts with the columns themselves.
>-> (\fields -> align columns (M.catMaybes fields) >- returnA)
>-> (| Inc.keyed (\_ fields -> fields >- noColumnConflicts) |)
where
noFieldConflicts this that = proc (fieldName, fields) -> case fields of
This (thisField, metadata) -> returnA -< Just (this thisField, metadata)
That (thatField, metadata) -> returnA -< Just (that thatField, metadata)
These (_, thisMetadata) (_, thatMetadata) -> do
tellA
-<
Seq.singleton $
CIInconsistency $
ConflictingObjects
("conflicting definitions for field " <>> fieldName)
[thisMetadata, thatMetadata]
returnA -< Nothing
noCustomFieldConflicts = proc (columns, nonColumnFields) -> do
let columnsByGQLName = mapFromL ciName $ M.elems columns
(|
Inc.keyed
( \_ (fieldInfo, metadata) ->
(|
withRecordInconsistency
( do
(|
traverseA_
( \fieldGQLName -> case M.lookup fieldGQLName columnsByGQLName of
-- Only raise an error if the GQL name isnt the same as the Postgres column name.
-- If they are the same, `noColumnConflicts` will catch it, and it will produce a
-- more useful error message.
Just columnInfo
| toTxt (ciColumn columnInfo) /= G.unName fieldGQLName ->
throwA
-<
err400 AlreadyExists $
"field definition conflicts with custom field name for postgres column "
<>> ciColumn columnInfo
_ -> returnA -< ()
)
|) (fieldInfoGraphQLNames fieldInfo)
returnA -< (fieldInfo, metadata)
)
|) metadata
)
|) nonColumnFields
noColumnConflicts = proc fields -> case fields of
This columnInfo -> returnA -< FIColumn columnInfo
That (fieldInfo, _) -> returnA -< fieldInfo
These columnInfo (_, fieldMetadata) -> do
recordInconsistency -< ((Nothing, fieldMetadata), "field definition conflicts with postgres column")
returnA -< FIColumn columnInfo
mkRelationshipMetadataObject ::
forall b a.
(ToJSON a, Backend b) =>
RelType ->
(SourceName, TableName b, RelDef a) ->
MetadataObject
mkRelationshipMetadataObject relType (source, table, relDef) =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTORel (_rdName relDef) relType
in MetadataObject objectId $ toJSON $ WithTable @b source table relDef
buildObjectRelationship ::
( ArrowChoice arr,
ArrowWriter (Seq CollectedInfo) arr,
Backend b
) =>
( HashMap (TableName b) (HashSet (ForeignKey b)),
( SourceName,
TableName b,
ObjRelDef b
)
)
`arr` Maybe (RelInfo b)
buildObjectRelationship = proc (fkeysMap, (source, table, relDef)) -> do
let buildRelInfo def = objRelP2Setup source table fkeysMap def
interpA -< buildRelationship @(WriterT _ Identity) source table buildRelInfo ObjRel relDef
buildArrayRelationship ::
( ArrowChoice arr,
ArrowWriter (Seq CollectedInfo) arr,
Backend b
) =>
( HashMap (TableName b) (HashSet (ForeignKey b)),
( SourceName,
TableName b,
ArrRelDef b
)
)
`arr` Maybe (RelInfo b)
buildArrayRelationship = proc (fkeysMap, (source, table, relDef)) -> do
let buildRelInfo def = arrRelP2Setup fkeysMap source table def
interpA -< buildRelationship @(WriterT _ Identity) source table buildRelInfo ArrRel relDef
buildRelationship ::
forall m b a.
( MonadWriter (Seq CollectedInfo) m,
ToJSON a,
Backend b
) =>
SourceName ->
TableName b ->
(RelDef a -> Either QErr (RelInfo b, [SchemaDependency])) ->
RelType ->
RelDef a ->
m (Maybe (RelInfo b))
buildRelationship source table buildRelInfo relType relDef = do
let relName = _rdName relDef
metadataObject = mkRelationshipMetadataObject @b relType (source, table, relDef)
schemaObject =
SOSourceObj source $
AB.mkAnyBackend $
SOITableObj @b table $
TORel relName
addRelationshipContext e = "in relationship " <> relName <<> ": " <> e
withRecordInconsistencyM metadataObject $ do
modifyErr (addTableContext @b table . addRelationshipContext) $ do
(info, dependencies) <- liftEither $ buildRelInfo relDef
recordDependenciesM metadataObject schemaObject dependencies
return info
mkComputedFieldMetadataObject ::
forall b.
(Backend b) =>
(SourceName, TableName b, ComputedFieldMetadata b) ->
MetadataObject
mkComputedFieldMetadataObject (source, table, ComputedFieldMetadata {..}) =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTOComputedField _cfmName
definition = AddComputedField source table _cfmName _cfmDefinition _cfmComment
in MetadataObject objectId (toJSON definition)
buildComputedField ::
forall b m.
( MonadWriter (Seq CollectedInfo) m,
BackendMetadata b
) =>
HashSet (TableName b) ->
SourceName ->
DBFunctionsMetadata b ->
TableName b ->
ComputedFieldMetadata b ->
m (Either QErr (Maybe (ComputedFieldInfo b)))
buildComputedField trackedTableNames source pgFunctions table cf@ComputedFieldMetadata {..} = runExceptT do
let addComputedFieldContext e = "in computed field " <> _cfmName <<> ": " <> e
function = _cfdFunction _cfmDefinition
funcDefs = fromMaybe [] $ M.lookup function pgFunctions
withRecordInconsistencyM (mkComputedFieldMetadataObject (source, table, cf)) $
modifyErr (addTableContext @b table . addComputedFieldContext) $ do
rawfi <- handleMultipleFunctions @b (_cfdFunction _cfmDefinition) funcDefs
buildComputedFieldInfo trackedTableNames table _cfmName _cfmDefinition rawfi _cfmComment
mkRemoteRelationshipMetadataObject ::
forall b.
Backend b =>
(SourceName, TableName b, RemoteRelationship) ->
MetadataObject
mkRemoteRelationshipMetadataObject (source, table, RemoteRelationship {..}) =
let objectId =
MOSourceObjId source $
AB.mkAnyBackend $
SMOTableObj @b table $
MTORemoteRelationship _rrName
in MetadataObject objectId $
toJSON $
CreateFromSourceRelationship @b source table _rrName _rrDefinition
-- | This is a "thin" wrapper around 'buildRemoteFieldInfo', which only knows
-- how to construct dependencies on the RHS of the join condition, so the
-- dependencies on the remote relationship on the LHS entity are computed here
buildRemoteRelationship ::
forall b m.
( MonadWriter (Seq CollectedInfo) m,
BackendMetadata b
) =>
HashMap SourceName (AB.AnyBackend PartiallyResolvedSource) ->
M.HashMap FieldName (DBJoinField b) ->
RemoteSchemaMap ->
(SourceName, TableName b, RemoteRelationship) ->
m (Either QErr (Maybe (RemoteFieldInfo (DBJoinField b))))
buildRemoteRelationship allSources allColumns remoteSchemaMap (source, table, rr@RemoteRelationship {..}) = runExceptT $ do
let metadataObject = mkRemoteRelationshipMetadataObject @b (source, table, rr)
schemaObj =
SOSourceObj source $
AB.mkAnyBackend $
SOITableObj @b table $
TORemoteRel _rrName
addRemoteRelationshipContext e = "in remote relationship" <> _rrName <<> ": " <> e
withRecordInconsistencyM metadataObject $
modifyErr (addTableContext @b table . addRemoteRelationshipContext) $ do
(remoteField, rhsDependencies) <-
buildRemoteFieldInfo (tableNameToLHSIdentifier @b table) allColumns rr allSources remoteSchemaMap
let lhsDependencies =
-- a direct dependency on the table on which this is defined
SchemaDependency (SOSourceObj source $ AB.mkAnyBackend $ SOITable @b table) DRTable
-- the relationship is also dependent on all the lhs
-- columns that are used in the join condition
:
flip map (M.elems $ _rfiLHS remoteField) \case
JoinColumn column _ ->
-- TODO: shouldn't this be DRColumn??
mkColDep @b DRRemoteRelationship source table column
JoinComputedField computedFieldInfo ->
mkComputedFieldDep @b DRRemoteRelationship source table $ _scfName computedFieldInfo
-- Here is the essence of the function: construct dependencies on the RHS
-- of the join condition.
recordDependenciesM metadataObject schemaObj (lhsDependencies <> rhsDependencies)
return remoteField