graphql-engine/server/benchmarks
awjchen cd957fb5ea ci: hide old benchmark reports on Github
https://github.com/hasura/graphql-engine-mono/pull/1996

GitOrigin-RevId: 0d2b607de9ea180e269c8f30f4a8b9618129d98f
2021-08-05 05:55:18 +00:00
..
benchmark_sets Remote Schema Customization take 2 using parser tranformations 2021-07-30 11:33:59 +00:00
utils ci: hide old benchmark reports on Github 2021-08-05 05:55:18 +00:00
.python-version Add initial benchmark suite, running in CI (closes hasura/graphql-engine-mono#736) 2021-07-08 18:19:51 +00:00
bench.sh Remote Schema Customization take 2 using parser tranformations 2021-07-30 11:33:59 +00:00
fabfile.py ci: hide old benchmark reports on Github 2021-08-05 05:55:18 +00:00
README_AMI.md Add initial benchmark suite, running in CI (closes hasura/graphql-engine-mono#736) 2021-07-08 18:19:51 +00:00
README.md Add initial benchmark suite, running in CI (closes hasura/graphql-engine-mono#736) 2021-07-08 18:19:51 +00:00
requirements-top-level.txt Add initial benchmark suite, running in CI (closes hasura/graphql-engine-mono#736) 2021-07-08 18:19:51 +00:00
requirements.txt Add initial benchmark suite, running in CI (closes hasura/graphql-engine-mono#736) 2021-07-08 18:19:51 +00:00

This is our v2 benchmark suite, which gets run in CI. It makes use of graphql-bench internally (which in turn uses the K6 load testing tool)

Here is an overview of this directory:

benchmark_sets/*

Each sub-directory here contains a different schema and accompanying latency benchmarks (see below for adding your own). Each benchmark set runs in parallel on CI.

bench.sh

This script runs a particular benchmark set against a particular hasura docker image or, if omitted, the hasura running on port 8181. e.g. to run the chinook benchmarks:

$ ./bench.sh chinook hasura/graphql-engine:v2.0.1

Only fairly recent (as of this writing) builds of hasura are supported.

Be aware benchmarks are tuned for our beefy CI machines, and some may perform poorly and give useless output on a laptop with few cores.

fabfile.py

This is the core of the CI functionality. It's possibile to run this locally but you'll need credentials (see .circleci/config.yaml). In general this can be ignored.


Interpreting benchmark results

  • bytes_alloc_per_req should be very stable but of course doesn't measure, e.g. whether we're generating efficient SQL

  • min latency is often very stable, especially when we have many (>5,000) samples; a regression here very likely means a change to the code is influencing performance ...or it might indicate the test run was unstable and should be taken with a grain of salt, or retried

  • ...but long tail latencies are very important; the 90th percentile may be a better target to optimize for than the median (50th percentile)

  • ...but keep in mind that longtail latencies are by definition noisey: the 99.9th percentile may represent only a handful of samples. Therefore be cautious when drawing inferences from a comparison of tail latencies between versions.

Adding a new benchmark

You'll create a new directory under benchmark_sets/, and in general can follow the pattern from chinook. The process looks like:

  • export_metadata to create your replace_metadata.json using stable hasura if possible, so that you can compare performance against older versions of hasura (e.g. chinook and huge_schema use v2 of metadata)

  • check major_gcs from /dev/rts_stats before and after a test run, ensuring the benchmark ran for long enough to perform at least a few major GCs.

  • play with benchmark duration, so that results are repeatable but take no longer than necessary (see also above)

  • if you're interested in latency, be sure you haven't requested a rate too close to the throughput limit; experiment locally to find an appropriate upper bounds for load.

  • set preAllocatedVUs juar high enough so that K6 doesn't have to allocate VUs during test, and you see no dropped_iterations reported

  • look for ✓ no error in body in K6 output to make sure your query is correct (assuming you're not benchmarking error handling)

  • document the purpose of the benchmark. e.g. "large response bodies at high throughput", or "complex joins with conditions on a table with a lot of data, ensuring we're generating an efficient query"; give context so your fellow developers have a sense of what a regression means

Make sure the benchmark set takes less than 20 minutes, otherwise it will be killed. You can always split benchmarks up into two different sets to be run in parallel.