graphql-engine/server/src-lib/Hasura/SQL/AnyBackend.hs
Evie Ciobanu d1f8b9a87d server: further improve anybackend module docs
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4465
GitOrigin-RevId: fda2b45468a94d5b25f9d5aed8199502ee9370ad
2022-05-09 10:12:59 +00:00

762 lines
30 KiB
Haskell

{-# LANGUAGE Arrows #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
-- | Dispatch over backends.
--
-- = Creating and consuming 'AnyBackend'
--
-- Creating a new value of type 'AnyBackend' is done via 'mkAnyBackend'.
--
-- Consuming a value of type 'AnyBackend' is done via either 'runAnyBackend' or
-- any of the dispatch functions ('dispatchAnyBackend', 'dispatchAnyBackend'',
-- 'dispatchAnyBackend''').
--
-- For implementation details, or when trying to understand this module, start
-- from 'AnyBackend'.
--
-- = Backend Architecture
--
-- Our multiple backend architecture uses type classes and associated types
-- in order to share code, such as parsing graphql queries, building
-- schemas and metadata, while still accounting for the differences between
-- backends.
--
-- Each backend implements the @Backend@ type class from "Hasura.RQL.Types.Backend"
-- as well as instances for other classes such as @BackendSchema@ from
-- "Hasura.GraphQL.Schema.Backend", and define the associated types and
-- functions, such as @ScalarType@ and @parseScalarValue@, which fit the backend.
--
-- Whenever one of these associated types (@ScalarType@, @Column@, etc.) are
-- used, we need to either push the 'BackendType' to our caller (and making our
-- type @BackendType -> Type@), or use 'AnyBackend' (and allow our type to be
-- 'Type'). This is particularly useful when we need to store a container of
-- any backend.
--
-- In order to actually program abstractly using type classes, we need the
-- type class instances to be available for us to use. This module is a trick
-- to enumerate all supported backends and their respective instances to convince
-- GHC that they can be used.
--
-- = Example usage
--
-- As an example of using this module, consider wanting to write a function
-- that calculates metrics for each source. For example, we want to count
-- the number of tables each source has.
--
-- The @SchemaCache@ (defined in "Hasura.RQL.Types.SchemaCache") holds a hash map
-- from each source to their information.
-- The source information is parameterized by the 'BackendType' and is hidden
-- using an existential type inside 'AnyBackend'. It essentially looks like this:
--
-- > data SourceInfo b = ...
-- >
-- > type SourceCache = HashMap SourceName (AnyBackend SourceInfo)
--
-- Our metrics calculation function cares which backend it receives, but only
-- for its type class instances so it can call the relevant functions:
--
-- > telemetryForSource :: forall (b :: BackendType). SourceInfo b -> TelemetryPayload
--
-- In order to apply this function to all backends and return the telemetry payload for each,
-- we need to map over the hash map and dispatch the function over the relevant backend.
-- we can do this with 'runBackend':
--
-- > telemetries =
-- > map
-- > (`runBackend` telemetryForSource)
-- > (scSources schemaCache)
--
-- If we want to be able to extract some information about the backend type
-- inside @telemetryForSource@, we can do this using 'backendTag':
--
-- > let telemetryForSource :: forall (b :: BackendType). HasTag b => SourceInfo b -> TelemetryPayload
-- > telemetryForSource =
-- > let dbKind = reify (backendTag @b)
--
-- Note that we needed to add the 'HasTag' constraint, which now means we can't use 'runBackend'
-- because our function has the wrong type (it has an extra constraint).
-- Instead, we can use 'dispatchAnyBackend' which allows us to have one constraint:
--
-- > telemetries =
-- > fmap
-- > (\sourceinfo -> (Any.dispatchAnyBackend @HasTag) sourceinfo telemetryForSource)
-- > (scSources schemaCache)
--
-- Note that we had to add the constraint name as a type application, and we had
-- to explicitly add a lambda instead of using 'flip'.
module Hasura.SQL.AnyBackend
( AnyBackend,
SatisfiesForAllBackends,
liftTag,
mkAnyBackend,
mapBackend,
traverseBackend,
dispatchAnyBackend,
dispatchAnyBackend',
dispatchAnyBackend'',
dispatchAnyBackendArrow,
dispatchAnyBackendWithTwoConstraints,
unpackAnyBackend,
composeAnyBackend,
runBackend,
parseAnyBackendFromJSON,
debugAnyBackendToJSON,
backendSourceKindFromText,
parseBackendSourceKindFromJSON,
)
where
import Control.Arrow.Extended (ArrowChoice, arr, (|||))
import Data.Aeson
import Data.Aeson.Types (Parser)
import Data.Kind (Constraint, Type)
import Data.Text.NonEmpty (mkNonEmptyText)
import Hasura.Backends.DataConnector.Adapter.Types (DataConnectorName (..))
import Hasura.Incremental (Cacheable)
import Hasura.Prelude
import Hasura.SQL.Backend
import Hasura.SQL.TH
import Hasura.SQL.Tag
import Language.Haskell.TH hiding (Type)
--------------------------------------------------------------------------------
-- * Types and constraints
-- | Allows storing types of kind @BackendType -> Type@ heterogenously.
--
-- Adding a new constructor to 'BackendType' will automatically create a new
-- constructor here.
--
-- Given some type defined as @data T (b :: BackendType) = ...@, we can define
-- @AnyBackend T@ without mentioning any 'BackendType'.
--
-- This is useful for having generic containers of potentially different types
-- of T. For instance, @SourceCache@ is defined as a
-- @HashMap SourceName (AnyBackend SourceInfo)@.
--
-- This type is generated with Template Haskell to have one constructor per
-- backend. This declaration generates the following type:
--
-- > data AnyBackend (i :: BackendType -> Type)
-- > = PostgresVanillaValue (i '(Postgres Vanilla))
-- > | PostgresCitusValue (i '(Postgres Citus))
-- > | BigQueryValue (i 'BigQuery)
-- > | MySQLValue (i 'MySQL)
-- > | MSSQLValue (i 'MSSQL)
-- > | ExperimentalValue (i 'Experimental)
$( do
-- the kind of the type variable, expressed with a quote
varKind <- [t|BackendType -> Type|]
-- how to build a basic type: no UNPACK, no strict!, just a name
let normalType = (Bang NoSourceUnpackedness NoSourceStrictness,)
-- the name of the type variable
let typeVarName = mkName "i"
backendData
-- the name of the type
(mkName "AnyBackend")
-- the type variable
[KindedTV typeVarName varKind]
-- the constructor for each backend
( \b ->
pure $
NormalC
-- the name of the constructor: `FooValue`
(getBackendValueName b)
-- one argument: @i 'Foo@
-- (we Apply a type Variable to a Promoted name)
[normalType $ AppT (VarT typeVarName) (getBackendTypeValue b)]
)
-- classes in the deriving clause
[''Generic]
)
-- | Generates a constraint for all backends.
--
-- This Template Haskell expression generates the following constraint type:
--
-- > type AllBackendsSatisfy (c :: BackendType -> Constraint) =
-- > ( c ('Postgres 'Vanilla)
-- > , c ('Postgres 'Citus)
-- > , c 'MSSQL
-- > , ...
-- > )
--
-- That is, given a class C, this creates the constraint that dictates that all
-- backend must satisfy C.
type AllBackendsSatisfy (c :: BackendType -> Constraint) =
$( do
-- the constraint for each backend: @c 'Foo@
-- (we Apply a type Variable to a Promoted name)
constraints <-
forEachBackend $
pure . AppT (VarT $ mkName "c") . getBackendTypeValue
-- transforms a list of constraints into a tuple of constraints
-- by folding the "type application" constructor:
--
-- > apply (,,) [c 'Foo, c 'Bar, c 'Baz]
-- > apply (c 'Foo,,) [c 'Bar, c 'Baz]
-- > apply (c 'Foo, c 'Bar,) [c 'Baz]
-- > apply (c 'Foo, c 'Bar, c 'Baz) []
-- = (c 'Foo, c 'Bar, c 'Baz)
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
-- | Generates a constraint for a generic type over all backends.
--
-- This Template Haskell expression generates the following constraint type:
--
-- > type SatisfiesForAllBackends
-- > (i :: BackendType -> Type)
-- > (c :: Type -> Constraint)
-- > = ( c (i 'Postgres)
-- > , c (i 'MSSQL)
-- > , ...
-- > )
--
-- That is, given a type I and a class C, this creates the constraint that
-- dictates that for all backends b, @I b@ must satisfy C.
type SatisfiesForAllBackends
(i :: BackendType -> Type)
(c :: Type -> Constraint) =
$( do
-- the constraint for each backend: @c (i 'Foo)@
constraints <-
forEachBackend $
pure . AppT (VarT $ mkName "c") . AppT (VarT $ mkName "i") . getBackendTypeValue
-- transforms a list of constraints into a tuple of constraints
-- by folding the type application constructor
-- by folding the "type application" constructor:
--
-- > apply (,,) [c (i 'Foo), c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo),,) [c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar),) [c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar), c (i 'Baz)) []
-- = (c (i 'Foo), c (i 'Bar), c (i 'Baz))
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
--------------------------------------------------------------------------------
-- * Functions on AnyBackend
-- | How to obtain a tag from a runtime value. This function is generated with
-- Template Haskell for each 'Backend'. The case switch looks like this:
--
-- > Postgres -> PostgresValue PostgresTag
-- > MSSQL -> MSSQLValue MSSQLTag
-- > ...
liftTag :: BackendType -> AnyBackend BackendTag
liftTag t =
$( backendCase
-- the expression on which we do the case switch
[|t|]
-- the pattern for a given backend: the backend type itself
(\(con :| args) -> pure $ ConP con [ConP a [] | a <- args])
-- the body for a given backend: creating and wrapping the tag
(\b -> [|$(pure $ ConE $ getBackendValueName b) $(pure $ ConE $ getBackendTagName b)|])
-- no default case: every constructor should be handled
Nothing
)
-- | Transforms an @AnyBackend i@ into an @AnyBackend j@.
mapBackend ::
forall
(i :: BackendType -> Type)
(j :: BackendType -> Type).
AnyBackend i ->
(forall b. i b -> j b) ->
AnyBackend j
mapBackend e f =
-- generates a case switch that, for each constructor, applies the provided function
-- case e of
-- FooValue x -> FooValue (f x)
-- BarValue x -> BarValue (f x)
$( do
-- we create a case match for each backend
matches <- forEachBackend \b -> do
-- the name of the constructor
let consName = getBackendValueName b
-- the patterrn we match: @FooValue x@
let matchPattern = ConP consName [VarP $ mkName "x"]
-- the body of the match: @FooValue (f x)@
matchBody <- [|$(pure $ ConE consName) (f x)|]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [|e|]
-- return the the expression of the case switch
pure $ CaseE caseExpr matches
)
-- | Traverse an @AnyBackend i@ into an @f (AnyBackend j)@.
traverseBackend ::
forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(j :: BackendType -> Type)
f.
(AllBackendsSatisfy c, Applicative f) =>
AnyBackend i ->
(forall b. c b => i b -> f (j b)) ->
f (AnyBackend j)
traverseBackend e f =
-- generates a case switch that, for each constructor, applies the provided function
--
-- > case e of
-- > FooValue x -> FooValue <$> f x
-- > BarValue x -> BarValue <$> f x
$( do
-- we create a case match for each backend
matches <- forEachBackend \b -> do
-- the name of the constructor
let consName = getBackendValueName b
-- the patterrn we match: @FooValue x@
let matchPattern = ConP consName [VarP $ mkName "x"]
-- the body of the match: @FooValue <$> f x@
matchBody <- [|$(pure $ ConE consName) <$> f x|]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [|e|]
-- return the the expression of the case switch
pure $ CaseE caseExpr matches
)
-- | Creates a new @AnyBackend i@ for a given backend @b@ by wrapping the given @i b@.
mkAnyBackend ::
forall
(b :: BackendType)
(i :: BackendType -> Type).
HasTag b =>
i b ->
AnyBackend i
mkAnyBackend =
-- generates a case switch that associates a tag constructor to a value constructor
--
-- > case backendTag @b of
-- > FooTag -> FooValue
-- > BarTag -> BarValue
$( backendCase
[|backendTag @b|]
-- the pattern for a backend
(\b -> pure $ ConP (getBackendTagName b) [])
-- the body for a backend
(pure . ConE . getBackendValueName)
-- no default case
Nothing
)
-- | Dispatch a function to the value inside the @AnyBackend@, that does not
-- require bringing into scope a new class constraint.
runBackend ::
forall
(i :: BackendType -> Type)
(r :: Type).
AnyBackend i ->
(forall (b :: BackendType). i b -> r) ->
r
runBackend b f = $(mkDispatch 'f 'b)
-- | Dispatch an existential using an universally quantified function while
-- also resolving a different constraint.
-- Use this to dispatch Backend* instances.
-- This is essentially a wrapper around @runAnyBackend f . repackAnyBackend \@c@.
dispatchAnyBackend ::
forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type).
AllBackendsSatisfy c =>
AnyBackend i ->
(forall (b :: BackendType). c b => i b -> r) ->
r
dispatchAnyBackend e f = $(mkDispatch 'f 'e)
dispatchAnyBackendWithTwoConstraints ::
forall
(c1 :: BackendType -> Constraint)
(c2 :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type).
AllBackendsSatisfy c1 =>
AllBackendsSatisfy c2 =>
AnyBackend i ->
(forall (b :: BackendType). c1 b => c2 b => i b -> r) ->
r
dispatchAnyBackendWithTwoConstraints e f = $(mkDispatch 'f 'e)
-- | Unlike 'dispatchAnyBackend', the expected constraint has a different kind.
-- Use for classes like 'Show', 'ToJSON', etc.
dispatchAnyBackend' ::
forall
(c :: Type -> Constraint)
(i :: BackendType -> Type)
(r :: Type).
i `SatisfiesForAllBackends` c =>
AnyBackend i ->
(forall (b :: BackendType). c (i b) => i b -> r) ->
r
dispatchAnyBackend' e f = $(mkDispatch 'f 'e)
-- | This allows you to apply a constraint to the Backend instances (c2)
-- as well as a constraint on the higher-kinded @i b@ type (c1)
dispatchAnyBackend'' ::
forall
(c1 :: Type -> Constraint)
(c2 :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type).
i `SatisfiesForAllBackends` c1 =>
AllBackendsSatisfy c2 =>
AnyBackend i ->
(forall (b :: BackendType). c2 b => c1 (i b) => i b -> r) ->
r
dispatchAnyBackend'' e f = $(mkDispatch 'f 'e)
-- | Sometimes we need to run operations on two backends of the same type.
-- If the backends don't contain the same type, the given @r@ value is returned.
-- Otherwise, the function is called with the two wrapped values.
composeAnyBackend ::
forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type).
AllBackendsSatisfy c =>
(forall (b :: BackendType). c b => i b -> i b -> r) ->
AnyBackend i ->
AnyBackend i ->
r ->
r
composeAnyBackend f e1 e2 owise =
-- generates the following case expression for all backends:
--
-- > (FooValue a, FooValue b) -> f a b
-- > (BarValue a, BarValue b) -> f a b
-- > ...
-- > _ -> owise
$( backendCase
[|(e1, e2)|]
-- the pattern for a given backend: @(FooValue a, FooValue b)@
( \b -> do
let valueCon n = pure $ ConP (getBackendValueName b) [VarP $ mkName n]
[p|($(valueCon "a"), $(valueCon "b"))|]
)
-- the body for each backend: @f a b@
(const [|f a b|])
-- the default case
(Just [|owise|])
)
-- | Try to unpack the type of an existential.
-- Returns @Just x@ upon a succesful match, @Nothing@ otherwise.
unpackAnyBackend ::
forall
(b :: BackendType)
(i :: BackendType -> Type).
HasTag b =>
AnyBackend i ->
Maybe (i b)
unpackAnyBackend exists =
-- generates the following case expression for all backends:
--
-- > (FooTag, FooValue a) -> Just a
-- > ...
-- > _ -> Nothing
$( backendCase
[|(backendTag @b, exists)|]
-- the pattern for a given backend
( \b -> do
let tagConstructor = pure $ ConP (getBackendTagName b) []
valConstructor = pure $ ConP (getBackendValueName b) [VarP $ mkName "a"]
[p|($tagConstructor, $valConstructor)|]
)
-- the body for each backend
(const [|Just a|])
-- the default case
(Just [|Nothing|])
)
--------------------------------------------------------------------------------
--
-- * Special case for arrows
--
-- $caseforarrows
-- Sadly, we CAN'T mix template haskell and arrow syntax... Meaning we can't
-- generate a 'backendCase' within proc syntax. What we have to do instead is to
-- MANUALLY DESUGAR the arrow code, to manually construct the following
-- pipeline.
--
-- > ┌────────────┐ ┌────────────────────┐ ┌───┐
-- > │ AnyBackend ├─┬──────►│ Left PostgresValue ├───────────────►│ f ├────────┐
-- > └────────────┘ │ └────────────────────┘ └───┘ │
-- > │ │
-- > │ ┌─────────────────────────┐ ┌───┐ │
-- > └─┬────►│ Right (Left MSSQLValue) ├──────────►│ f ├─────┐ │
-- > │ └─────────────────────────┘ └───┘ │ │
-- > │ │ │
-- > │ ┌─────────────────────────────────┐ ┌───┐ │ │
-- > └─┬──►│ Right (Right (Left MongoValue)) ├───┤ f ├──┐ │ │
-- > │ └─────────────────────────────────┘ └───┘ │ │ │
-- > │ │ │ │
-- > │ ┌───────────────────────────┐ ┌───┐ │ │ │ ┌───┐
-- > └──►│ Right (Right (Right ...)) ├─────────┤ f ├──┴──┴──┴─►│ r │
-- > └───────────────────────────┘ └───┘ └───┘
--
-- This is what, internally, GHC would translate an arrow case-switch into: the
-- only tool it has is:
--
-- > (|||) :: a b d -> a c d -> a (Either b c) d
--
-- It must therefore encode the case switch as an arrow from the original value
-- to this tree of Either, and then coalesce them using (|||). This is what we
-- do here.
-- | First, we create a type to represent our complicated Either type. We use
-- `Void` as a terminating case for our recursion. This declaration creates the
-- following type:
--
-- > type BackendChoice (i :: BackendType -> Type)
-- > = Either (i 'Postgres)
-- > ( Either (i 'MSSQL)
-- > ( Either ...
-- > Void
type BackendChoice (i :: BackendType -> Type) =
$( do
-- creates the type (i b) for each backend b
types <-
forEachBackend $
pure . AppT (VarT $ mkName "i") . getBackendTypeValue
-- generate the either type by folding over that list
let appEither l r = [t|Either $(pure l) $(pure r)|]
foldrM appEither (ConT ''Void) types
)
-- | Spread a 'AnyBackend' into a 'BackendChoice'.
--
-- Given backends @Foo@, @Bar@, @Baz@, the type of @BackendChoice c@ will be:
--
-- > ( Either (c 'Foo)
-- > ( Either (c 'Bar)
-- > ( Either (c 'Baz)
-- > Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- > case e of
-- > FooValue x -> Left x
-- > BarValue x -> Right (Left x)
-- > BazValue x -> Right (Right (Left x))
spreadChoice ::
forall
(i :: BackendType -> Type)
(arr :: Type -> Type -> Type).
(ArrowChoice arr) =>
arr (AnyBackend i) (BackendChoice i)
spreadChoice = arr $ \e ->
$( do
-- to each backend we match a 'BackendChoice' constructor
-- in order: Left, Right . Left, Right . Right . Left...
let choiceCons = iterate (UInfixE (ConE 'Right) (VarE '(.))) (ConE 'Left)
backendCons <- backendConstructors
-- we then construct the case match for each of them
matches <- for (zip backendCons choiceCons) \(b, c) -> do
-- name of the constructor: FooValue
let consName = getBackendValueName b
-- pattern of the match: @FooValue x@
let matchPattern = ConP consName [VarP $ mkName "x"]
-- expression of the match: applying the 'BackendChoice' constructor to x
matchBody <- [|$(pure c) x|]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [|e|]
-- we return the case expression
pure $ CaseE caseExpr matches
)
-- | Coalesce a 'BackendChoice' into a result, given an arrow from each
-- possibilty to a common result.
--
-- Given backends Foo, Bar, Baz, the type of @BackendChoice c@ will be:
--
-- > ( Either (c 'Foo)
-- > ( Either (c 'Bar)
-- > ( Either (c 'Baz)
-- > Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- > ( arrow |||
-- > ( arrow |||
-- > ( arrow |||
-- > absurd )))
coalesceChoice ::
forall
(c1 :: BackendType -> Constraint)
(c2 :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type).
(ArrowChoice arr, AllBackendsSatisfy c1, AllBackendsSatisfy c2) =>
(forall b. c1 b => c2 b => arr (i b) r) ->
arr (BackendChoice i) r
coalesceChoice arrow =
$( do
-- associate the arrow to each type
arrows <- forEachBackend $ const [|arrow|]
-- the default case of our fold is @arr absurd@ for the terminating Void
baseCase <- [|arr absurd|]
-- how to combine two arrows using (|||)
let combine l r = [|$(pure l) ||| $(pure r)|]
foldrM combine baseCase arrows
)
-- | Dispatch variant for use with arrow syntax. The universally quantified
-- dispatch function is an arrow instead. Since we can't express this using
-- Template Haskell, we instead generate the arrow by combining `spreadChoice`
-- and `coalesceChoice`.
dispatchAnyBackendArrow' ::
forall
(c1 :: BackendType -> Constraint)
(c2 :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type).
(ArrowChoice arr, AllBackendsSatisfy c1, AllBackendsSatisfy c2) =>
(forall b. c1 b => c2 b => arr (i b) r) ->
arr (AnyBackend i) r
dispatchAnyBackendArrow' arrow = spreadChoice >>> coalesceChoice @c1 @c2 arrow
-- | While dispatchAnyBackendArrow' is expressed over an `AnyBackend`, in
-- practice we need slightly more complex types. Specifically: the only call
-- site for 'dispatchAnyBackendArrow' uses a four element tuple containing an
-- 'AnyBackend'.
newtype BackendArrowTuple x i (b :: BackendType) = BackendArrowTuple {unTuple :: (i b, x)}
-- | Finally, we can do the dispatch on the four-elements tuple.
-- Here's what happens, step by step:
--
-- > ┌─────────────────────────┐
-- > │ (x, y, AnyBackend i, z) │
-- > └─┬───────────────────────┘
-- > │
-- > │ cons
-- > ▼
-- > ┌────────────────────────────────────────┐ ┌─────────────────────────────┐
-- > │ AnyBackend (BackendArrowTuple x y z i) │ ┌───► │ BackendArrowTuple x y z i b │
-- > └─┬──────────────────────────────────────┘ │ └─┬───────────────────────────┘
-- > │ │ │
-- > │ spreadChoice │ │ arr unTuple
-- > ▼ │ ▼
-- > ┌───────────────────────────────────────────┐ │ ┌────────────────┐
-- > │ BackendChoice (BackendArrowTuple x y z i) │ │ │ (x, y, i b, z) │
-- > └─┬─────────────────────────────────────────┘ │ └─┬──────────────┘
-- > │ │ │
-- > │ coalesceChoice (arr unTuple >>> arrow) ◄─────┘ │ arrow
-- > ▼ ▼
-- > ┌───┐ ┌───┐
-- > │ r │ │ r │
-- > └───┘ └───┘
--
-- NOTE: The below function accepts two constraints, if the arrow
-- you want to dispatch only has one constraint then repeat the constraint twice.
-- For example:
--
-- > AB.dispatchAnyBackendArrow @BackendMetadata @BackendMetadata (proc (sourceMetadata, invalidationKeys)
dispatchAnyBackendArrow ::
forall
(c1 :: BackendType -> Constraint)
(c2 :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
x.
(ArrowChoice arr, AllBackendsSatisfy c1, AllBackendsSatisfy c2) =>
(forall b. c1 b => c2 b => arr (i b, x) r) ->
arr (AnyBackend i, x) r
dispatchAnyBackendArrow arrow =
arr cons >>> dispatchAnyBackendArrow' @c1 @c2 (arr unTuple >>> arrow)
where
cons :: (AnyBackend i, x) -> AnyBackend (BackendArrowTuple x i)
cons (e, x) = mapBackend e \ib -> BackendArrowTuple (ib, x)
--------------------------------------------------------------------------------
-- * JSON functions
-- | Attempts to parse an 'AnyBackend' from a JSON value, using the provided
-- backend information.
parseAnyBackendFromJSON ::
i `SatisfiesForAllBackends` FromJSON =>
BackendType ->
Value ->
Parser (AnyBackend i)
parseAnyBackendFromJSON backendKind value = do
-- generates the following case for all backends:
-- Foo -> FooValue <$> parseJSON value
-- Bar -> BarValue <$> parseJSON value
-- ...
$( backendCase
[|backendKind|]
-- the pattern for a given backend
(\(con :| args) -> pure $ ConP con [ConP arg [] | arg <- args])
-- the body for each backend
( \b -> do
let valueCon = pure $ ConE $ getBackendValueName b
[|$valueCon <$> parseJSON value|]
)
-- no default case
Nothing
)
-- | Outputs a debug JSON value from an 'AnyBackend'. This function must only be
-- used for debug purposes, as it has no way of inserting the backend kind in
-- the output, since there's no guarantee that the output will be an object.
debugAnyBackendToJSON ::
i `SatisfiesForAllBackends` ToJSON =>
AnyBackend i ->
Value
debugAnyBackendToJSON e = dispatchAnyBackend' @ToJSON e toJSON
--------------------------------------------------------------------------------
-- * Instances for 'AnyBackend'
deriving instance i `SatisfiesForAllBackends` Show => Show (AnyBackend i)
deriving instance i `SatisfiesForAllBackends` Eq => Eq (AnyBackend i)
instance i `SatisfiesForAllBackends` Hashable => Hashable (AnyBackend i)
instance i `SatisfiesForAllBackends` Cacheable => Cacheable (AnyBackend i)
backendSourceKindFromText :: Text -> Maybe (AnyBackend BackendSourceKind)
backendSourceKindFromText text =
PostgresVanillaValue <$> staticKindFromText PostgresVanillaKind
<|> PostgresCitusValue <$> staticKindFromText PostgresCitusKind
<|> MSSQLValue <$> staticKindFromText MSSQLKind
<|> BigQueryValue <$> staticKindFromText BigQueryKind
<|> MySQLValue <$> staticKindFromText MySQLKind
-- IMPORTANT: This must be the last thing here, since it will accept (almost) any string
<|> DataConnectorValue . DataConnectorKind . DataConnectorName <$> mkNonEmptyText text
where
staticKindFromText :: BackendSourceKind b -> Maybe (BackendSourceKind b)
staticKindFromText kind =
if text `elem` backendTextNames (backendTypeFromBackendSourceKind kind)
then Just kind
else Nothing
parseBackendSourceKindFromJSON :: Value -> Parser (AnyBackend BackendSourceKind)
parseBackendSourceKindFromJSON value =
PostgresVanillaValue <$> parseJSON @(BackendSourceKind ('Postgres 'Vanilla)) value
<|> PostgresCitusValue <$> parseJSON @(BackendSourceKind ('Postgres 'Citus)) value
<|> MSSQLValue <$> parseJSON @(BackendSourceKind ('MSSQL)) value
<|> BigQueryValue <$> parseJSON @(BackendSourceKind ('BigQuery)) value
<|> MySQLValue <$> parseJSON @(BackendSourceKind ('MySQL)) value
-- IMPORTANT: This must the last thing here, since it will accept (almost) any string
<|> DataConnectorValue <$> parseJSON @(BackendSourceKind ('DataConnector)) value