mirror of
https://github.com/hasura/graphql-engine.git
synced 2024-12-17 12:31:52 +03:00
104 lines
3.2 KiB
ReStructuredText
104 lines
3.2 KiB
ReStructuredText
Using serverless functions
|
|
==========================
|
|
|
|
You can use serverless functions along with Hasura event triggers to design an async business workflow without
|
|
having to manage any dedicated infrastructure.
|
|
|
|
As Hasura event triggers can deliver database events to any webhook, serverless functions can be perfect candidates
|
|
for their handlers.
|
|
|
|
Why use serverless functions?
|
|
-----------------------------
|
|
1. Cost effectiveness
|
|
2. No infra management
|
|
3. Async business logic
|
|
|
|
Examples
|
|
--------
|
|
|
|
You can find a bunch of examples for various serverless cloud providers in this repo:
|
|
|
|
https://github.com/hasura/cloud-functions-boilerplates
|
|
|
|
For example: update related data on a database event
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
In this example we make a note taking app. Whenever a user updates their note, we want to store a revision of that
|
|
note in a separate table.
|
|
|
|
You can find the complete example at:
|
|
|
|
https://github.com/hasura/cloud-functions-boilerplates/tree/master/aws-lambda/nodejs6/mutation-trigger.
|
|
|
|
Consider the following simplified schema for the above:
|
|
|
|
.. code-block:: SQL
|
|
|
|
notes (
|
|
id INT PRIMARY KEY,
|
|
note TEXT
|
|
)
|
|
|
|
note_revision (
|
|
id INT PRIMARY KEY,
|
|
note TEXT,
|
|
note_id INT FOREIGN KEY REFERENCES notes(id),
|
|
update_at TIMESTAMP DEFAULT now()
|
|
)
|
|
|
|
|
|
Whenever an update happens to the ``notes`` table, we want to insert a row into the ``note_revision`` table.
|
|
|
|
For this we :doc:`setup an event trigger <create-trigger>` on ``UPDATE`` to the ``notes`` table which calls an
|
|
AWS Lambda function. The AWS Lambda function itself uses a GraphQL mutation to insert a new row into the
|
|
``note_revision`` table. As the :doc:`event trigger payload <payload>` in case of updates gives us both the old and
|
|
the new data, we can store the old note data in our revision table.
|
|
|
|
Our AWS Lambda code looks like this:
|
|
|
|
.. code-block:: javascript
|
|
|
|
// Lambda which gets triggered on insert, and in turns performs a mutation
|
|
|
|
const fetch = require('node-fetch');
|
|
|
|
const accessKey = process.env.ACCESS_KEY;
|
|
const hgeEndpoint = process.env.HGE_ENDPOINT;
|
|
|
|
const query = `
|
|
mutation updateNoteRevision ($noteId: Int!, $data: String!) {
|
|
insert_note_revision (objects: [
|
|
{
|
|
note_id: $noteId,
|
|
note: $data
|
|
}
|
|
]) {
|
|
affected_rows
|
|
}
|
|
}
|
|
`;
|
|
|
|
exports.handler = (event, context, callback) => {
|
|
let request;
|
|
try {
|
|
request = JSON.parse(event.body);
|
|
} catch (e) {
|
|
return callback(null, {statusCode: 400, body: "cannot parse hasura event"});
|
|
}
|
|
|
|
const response = {
|
|
statusCode: 200,
|
|
body: "success"
|
|
};
|
|
const qv = {noteId: request.data.old.id, data: request.data.old.note};
|
|
fetch(hgeEndpoint + '/v1alpha1/graphql', {
|
|
method: 'POST',
|
|
body: JSON.stringify({query: query, variables: qv}),
|
|
headers: {'Content-Type': 'application/json', 'x-hasura-access-key': accessKey},
|
|
})
|
|
.then(res => res.json())
|
|
.then(json => {
|
|
console.log(json);
|
|
callback(null, response);
|
|
});
|
|
}; |