mirror of
https://github.com/hasura/graphql-engine.git
synced 2024-12-18 13:02:11 +03:00
1035 lines
43 KiB
Haskell
1035 lines
43 KiB
Haskell
{-# OPTIONS_HADDOCK not-home #-}
|
||
{-# LANGUAGE AllowAmbiguousTypes #-}
|
||
{-# LANGUAGE StrictData #-}
|
||
{-# LANGUAGE ViewPatterns #-}
|
||
|
||
-- | Defines the 'Parser' type and its primitive combinators.
|
||
module Hasura.GraphQL.Parser.Internal.Parser where
|
||
|
||
import Hasura.Prelude
|
||
|
||
import qualified Data.Aeson as A
|
||
import qualified Data.HashMap.Strict.Extended as M
|
||
import qualified Data.HashMap.Strict.InsOrd as OMap
|
||
import qualified Data.HashSet as S
|
||
import qualified Data.Text as T
|
||
import qualified Data.List.Extended as LE
|
||
|
||
import Control.Lens.Extended hiding (enum, index)
|
||
import Data.Int (Int32, Int64)
|
||
import Data.Scientific (toBoundedInteger)
|
||
import Data.Parser.JSONPath
|
||
import Data.Type.Equality
|
||
import Language.GraphQL.Draft.Syntax hiding (Definition)
|
||
|
||
import Hasura.GraphQL.Parser.Class
|
||
import Hasura.GraphQL.Parser.Collect
|
||
import Hasura.GraphQL.Parser.Schema
|
||
import Hasura.RQL.Types.CustomTypes
|
||
import Hasura.RQL.Types.Error
|
||
import Hasura.Server.Utils (englishList)
|
||
import Hasura.SQL.Text
|
||
import Hasura.SQL.Value
|
||
|
||
|
||
-- -----------------------------------------------------------------------------
|
||
-- type definitions
|
||
|
||
-- | A 'Parser' that corresponds to a type in the GraphQL schema. A 'Parser' is
|
||
-- really two things at once:
|
||
--
|
||
-- 1. As its name implies, a 'Parser' can be used to parse GraphQL queries
|
||
-- (via 'runParser').
|
||
--
|
||
-- 2. Less obviously, a 'Parser' represents a slice of the GraphQL schema,
|
||
-- since every 'Parser' corresponds to a particular GraphQL type, and
|
||
-- information about that type can be recovered (via 'parserType').
|
||
--
|
||
-- A natural way to view this is that 'Parser's support a sort of dynamic
|
||
-- reflection: in addition to running a 'Parser' on an input query, you can ask
|
||
-- it to tell you about what type of input it expects. Importantly, you can do
|
||
-- this even if you don’t have a query to parse; this is necessary to implement
|
||
-- GraphQL introspection, which provides precisely this sort of reflection on
|
||
-- types.
|
||
--
|
||
-- Another way of viewing a 'Parser' is a little more quantum: just as light
|
||
-- “sometimes behaves like a particle and sometimes behaves like a wave,” a
|
||
-- 'Parser' “sometimes behaves like a query parser and sometimes behaves like a
|
||
-- type.” In this way, you can think of a function that produces a 'Parser' as
|
||
-- simultaneously both a function that constructs a GraphQL schema and a
|
||
-- function that parses a GraphQL query. 'Parser' constructors therefore
|
||
-- interleave two concerns: information about a type definition (like the type’s
|
||
-- name and description) and information about how to parse a query on that type.
|
||
--
|
||
-- Notably, these two concerns happen at totally different phases in the
|
||
-- program: GraphQL schema construction happens when @graphql-engine@ first
|
||
-- starts up, before it receives any GraphQL queries at all. But query parsing
|
||
-- obviously can’t happen until there is actually a query to parse. For that
|
||
-- reason, it’s useful to take care to distinguish which effects are happening
|
||
-- at which phase during 'Parser' construction, since otherwise you may get
|
||
-- mixed up!
|
||
--
|
||
-- For some more information about how to interpret the meaning of a 'Parser',
|
||
-- see Note [The meaning of Parser 'Output].
|
||
data Parser k m a = Parser
|
||
{ pType :: ~(Type k)
|
||
-- ^ Lazy for knot-tying reasons; see Note [Tying the knot] in
|
||
-- Hasura.GraphQL.Parser.Class.
|
||
, pParser :: ParserInput k -> m a
|
||
} deriving (Functor)
|
||
|
||
parserType :: Parser k m a -> Type k
|
||
parserType = pType
|
||
|
||
runParser :: Parser k m a -> ParserInput k -> m a
|
||
runParser = pParser
|
||
|
||
instance HasName (Parser k m a) where
|
||
getName = getName . pType
|
||
|
||
instance HasDefinition (Parser k m a) (TypeInfo k) where
|
||
definitionLens f parser = definitionLens f (pType parser) <&> \pType -> parser { pType }
|
||
|
||
type family ParserInput k where
|
||
-- see Note [The 'Both kind] in Hasura.GraphQL.Parser.Schema
|
||
ParserInput 'Both = InputValue Variable
|
||
ParserInput 'Input = InputValue Variable
|
||
-- see Note [The meaning of Parser 'Output]
|
||
ParserInput 'Output = SelectionSet NoFragments Variable
|
||
|
||
{- Note [The meaning of Parser 'Output]
|
||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
The ParserInput type family determines what a Parser accepts as input during
|
||
query parsing, which varies based on its Kind. A `Parser 'Input`,
|
||
unsurprisingly, parses GraphQL input values, much in the same way aeson
|
||
`Parser`s parse JSON values.
|
||
|
||
Therefore, one might naturally conclude that `Parser 'Output` ought to parse
|
||
GraphQL output values. But it doesn’t---a Parser is used to parse GraphQL
|
||
*queries*, and output values don’t show up in queries anywhere! Rather, the
|
||
output values are the results of executing the query, not something the user
|
||
sends us, so we don’t have to parse those at all.
|
||
|
||
What output types really correspond to in GraphQL queries is selection sets. For
|
||
example, if we have the GraphQL types
|
||
|
||
type User {
|
||
posts(filters: PostFilters): [Post]
|
||
}
|
||
|
||
input PostFilters {
|
||
newer_than: Date
|
||
}
|
||
|
||
type Post {
|
||
id: Int
|
||
title: String
|
||
body: String
|
||
}
|
||
|
||
then we might receive a query that looks like this:
|
||
|
||
query list_user_posts($user_id: Int, $date: Date) {
|
||
user_by_id(id: $user_id) {
|
||
posts(filters: {newer_than: $date}) {
|
||
id
|
||
title
|
||
}
|
||
}
|
||
}
|
||
|
||
We have Parsers to represent each of these types: a `Parser 'Input` for
|
||
PostFilters, and two `Parser 'Output`s for User and Post. When we parse the
|
||
query, we pass the `{newer_than: $date}` input value to the PostFilters parser,
|
||
as expected. But what do we pass to the User parser? The answer is this
|
||
selection set:
|
||
|
||
{
|
||
posts(filters: {newer_than: $date}) {
|
||
id
|
||
title
|
||
}
|
||
}
|
||
|
||
Likewise, the Post parser eventually receives the inner selection set:
|
||
|
||
{
|
||
id
|
||
title
|
||
}
|
||
|
||
These Parsers handle interpreting the fields of the selection sets. This is why
|
||
`ParserInput 'Output` is SelectionSet---the GraphQL *type* associated with the
|
||
Parser is an output type, but the part of the *query* that corresponds to that
|
||
output type isn’t an output value but a selection set. -}
|
||
|
||
-- | The constraint @(''Input' '<:' k)@ entails @('ParserInput' k ~ 'Value')@,
|
||
-- but GHC can’t figure that out on its own, so we have to be explicit to give
|
||
-- it a little help.
|
||
inputParserInput :: forall k. 'Input <: k => ParserInput k :~: InputValue Variable
|
||
inputParserInput = case subKind @'Input @k of { KRefl -> Refl; KBoth -> Refl }
|
||
|
||
pInputParser :: forall k m a. 'Input <: k => Parser k m a -> InputValue Variable -> m a
|
||
pInputParser = gcastWith (inputParserInput @k) pParser
|
||
|
||
infixl 1 `bind`
|
||
bind :: Monad m => Parser k m a -> (a -> m b) -> Parser k m b
|
||
bind p f = p { pParser = pParser p >=> f }
|
||
|
||
-- | Parses some collection of input fields. Build an 'InputFieldsParser' using
|
||
-- 'field', 'fieldWithDefault', or 'fieldOptional', combine several together
|
||
-- with the 'Applicative' instance, and finish it off using 'object' to turn it
|
||
-- into a 'Parser'.
|
||
data InputFieldsParser m a = InputFieldsParser
|
||
-- Note: this is isomorphic to
|
||
-- Compose ((,) [Definition (FieldInfo k)])
|
||
-- (ReaderT (HashMap Name (FieldInput k)) m) a
|
||
-- but working with that type sucks.
|
||
{ ifDefinitions :: [Definition InputFieldInfo]
|
||
, ifParser :: HashMap Name (InputValue Variable) -> m a
|
||
} deriving (Functor)
|
||
|
||
infixl 1 `bindFields`
|
||
bindFields :: Monad m => InputFieldsParser m a -> (a -> m b) -> InputFieldsParser m b
|
||
bindFields p f = p { ifParser = ifParser p >=> f }
|
||
|
||
instance Applicative m => Applicative (InputFieldsParser m) where
|
||
pure v = InputFieldsParser [] (const $ pure v)
|
||
a <*> b = InputFieldsParser
|
||
(ifDefinitions a <> ifDefinitions b)
|
||
(liftA2 (<*>) (ifParser a) (ifParser b))
|
||
|
||
-- | A parser for a single field in a selection set. Build a 'FieldParser'
|
||
-- with 'selection' or 'subselection', and combine them together with
|
||
-- 'selectionSet' to obtain a 'Parser'.
|
||
data FieldParser m a = FieldParser
|
||
{ fDefinition :: Definition FieldInfo
|
||
, fParser :: Field NoFragments Variable -> m a
|
||
} deriving (Functor)
|
||
|
||
infixl 1 `bindField`
|
||
bindField :: Monad m => FieldParser m a -> (a -> m b) -> FieldParser m b
|
||
bindField p f = p { fParser = fParser p >=> f }
|
||
|
||
-- | A single parsed field in a selection set.
|
||
data ParsedSelection a
|
||
-- | An ordinary field.
|
||
= SelectField a
|
||
-- | The magical @__typename@ field, implicitly available on all objects
|
||
-- <as part of GraphQL introspection http://spec.graphql.org/June2018/#sec-Type-Name-Introspection>.
|
||
| SelectTypename Name
|
||
deriving (Functor)
|
||
|
||
handleTypename :: (Name -> a) -> ParsedSelection a -> a
|
||
handleTypename _ (SelectField value) = value
|
||
handleTypename f (SelectTypename name) = f name
|
||
|
||
-- -----------------------------------------------------------------------------
|
||
-- combinators
|
||
|
||
data ScalarRepresentation a where
|
||
SRBoolean :: ScalarRepresentation Bool
|
||
SRInt :: ScalarRepresentation Int32
|
||
SRFloat :: ScalarRepresentation Double
|
||
SRString :: ScalarRepresentation Text
|
||
|
||
scalar
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> ScalarRepresentation a
|
||
-> Parser 'Both m a
|
||
scalar name description representation = Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \v -> case representation of
|
||
SRBoolean -> case v of
|
||
GraphQLValue (VBoolean b) -> pure b
|
||
JSONValue (A.Bool b) -> pure b
|
||
_ -> typeMismatch name "a boolean" v
|
||
SRInt -> case v of
|
||
GraphQLValue (VInt i) -> convertWith scientificToInteger $ fromInteger i
|
||
JSONValue (A.Number n) -> convertWith scientificToInteger n
|
||
_ -> typeMismatch name "a 32-bit integer" v
|
||
SRFloat -> case v of
|
||
GraphQLValue (VFloat f) -> convertWith scientificToFloat f
|
||
GraphQLValue (VInt i) -> convertWith scientificToFloat $ fromInteger i
|
||
JSONValue (A.Number n) -> convertWith scientificToFloat n
|
||
_ -> typeMismatch name "a float" v
|
||
SRString -> case v of
|
||
GraphQLValue (VString s) -> pure s
|
||
JSONValue (A.String s) -> pure s
|
||
_ -> typeMismatch name "a string" v
|
||
}
|
||
where
|
||
schemaType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
||
convertWith f = either (parseErrorWith ParseFailed . qeError) pure . runAesonParser f
|
||
|
||
{- WIP NOTE (FIXME: make into an actual note by expanding on it a bit)
|
||
|
||
There's a delicate balance between GraphQL types and Postgres types.
|
||
|
||
The mapping is done in the 'column' parser. But we want to only have
|
||
one source of truth for parsing postgres values, which happens to be
|
||
the JSON parsing code in SQL.Value. So here we reuse some of that code
|
||
despite not having a JSON value.
|
||
|
||
-}
|
||
|
||
boolean :: MonadParse m => Parser 'Both m Bool
|
||
boolean = scalar boolScalar Nothing SRBoolean
|
||
|
||
int :: MonadParse m => Parser 'Both m Int32
|
||
int = scalar intScalar Nothing SRInt
|
||
|
||
float :: MonadParse m => Parser 'Both m Double
|
||
float = scalar floatScalar Nothing SRFloat
|
||
|
||
string :: MonadParse m => Parser 'Both m Text
|
||
string = scalar stringScalar Nothing SRString
|
||
|
||
-- | As an input type, any string or integer input value should be coerced to ID as Text
|
||
-- https://spec.graphql.org/June2018/#sec-ID
|
||
identifier :: MonadParse m => Parser 'Both m Text
|
||
identifier = Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
||
GraphQLValue (VString s) -> pure s
|
||
GraphQLValue (VInt i) -> pure $ T.pack $ show i
|
||
JSONValue (A.String s) -> pure s
|
||
JSONValue (A.Number n) -> parseScientific n
|
||
v -> typeMismatch idName "a String or a 32-bit integer" v
|
||
}
|
||
where
|
||
idName = idScalar
|
||
schemaType = NonNullable $ TNamed $ mkDefinition idName Nothing TIScalar
|
||
parseScientific = either (parseErrorWith ParseFailed . qeError)
|
||
(pure . T.pack . show @Int) . runAesonParser scientificToInteger
|
||
|
||
namedJSON :: MonadParse m => Name -> Maybe Description -> Parser 'Both m A.Value
|
||
namedJSON name description = Parser
|
||
{ pType = schemaType
|
||
, pParser = valueToJSON $ toGraphQLType schemaType
|
||
}
|
||
where
|
||
schemaType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
||
|
||
json, jsonb :: MonadParse m => Parser 'Both m A.Value
|
||
json = namedJSON $$(litName "json") Nothing
|
||
jsonb = namedJSON $$(litName "jsonb") Nothing
|
||
|
||
-- | Explicitly define any desired scalar type. This is unsafe because it does
|
||
-- not mark queries as unreusable when they should be.
|
||
unsafeRawScalar
|
||
:: MonadParse n
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Parser 'Both n (InputValue Variable)
|
||
unsafeRawScalar name description = Parser
|
||
{ pType = NonNullable $ TNamed $ mkDefinition name description TIScalar
|
||
, pParser = pure
|
||
}
|
||
|
||
enum
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> NonEmpty (Definition EnumValueInfo, a)
|
||
-> Parser 'Both m a
|
||
enum name description values = Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
||
JSONValue (A.String stringValue)
|
||
| Just enumValue <- mkName stringValue -> validate enumValue
|
||
GraphQLValue (VEnum (EnumValue enumValue)) -> validate enumValue
|
||
other -> typeMismatch name "an enum value" other
|
||
}
|
||
where
|
||
schemaType = NonNullable $ TNamed $ mkDefinition name description $ TIEnum (fst <$> values)
|
||
valuesMap = M.fromList $ over (traverse._1) dName $ toList values
|
||
validate value = case M.lookup value valuesMap of
|
||
Just result -> pure result
|
||
Nothing -> parseError $ "expected one of the values "
|
||
<> englishList "or" (toTxt . dName . fst <$> values) <> " for type "
|
||
<> name <<> ", but found " <>> value
|
||
|
||
nullable :: forall k m a. (MonadParse m, 'Input <: k) => Parser k m a -> Parser k m (Maybe a)
|
||
nullable parser = gcastWith (inputParserInput @k) Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
||
JSONValue A.Null -> pure Nothing
|
||
GraphQLValue VNull -> pure Nothing
|
||
value -> Just <$> pParser parser value
|
||
}
|
||
where
|
||
schemaType = nullableType $ pType parser
|
||
|
||
-- | Decorate a schema field as NON_NULL
|
||
nonNullableField :: forall m a . FieldParser m a -> FieldParser m a
|
||
nonNullableField (FieldParser (Definition n u d (FieldInfo as t)) p) =
|
||
FieldParser (Definition n u d (FieldInfo as (nonNullableType t))) p
|
||
|
||
-- | Decorate a schema field as NULL
|
||
nullableField :: forall m a . FieldParser m a -> FieldParser m a
|
||
nullableField (FieldParser (Definition n u d (FieldInfo as t)) p) =
|
||
FieldParser (Definition n u d (FieldInfo as (nullableType t))) p
|
||
{-
|
||
field = field
|
||
{ fDefinition = (fDefinition field)
|
||
{ dInfo = (dInfo (fDefinition field))
|
||
{ fType = nonNullableType (fType (dInfo (fDefinition field)))
|
||
}
|
||
}
|
||
}
|
||
-}
|
||
-- | Decorate a schema output type as NON_NULL
|
||
nonNullableParser :: forall m a . Parser 'Output m a -> Parser 'Output m a
|
||
nonNullableParser parser = parser { pType = nonNullableType (pType parser) }
|
||
|
||
multiple :: Parser 'Output m a -> Parser 'Output m a
|
||
multiple parser = parser { pType = Nullable $ TList $ pType parser }
|
||
|
||
list :: forall k m a. (MonadParse m, 'Input <: k) => Parser k m a -> Parser k m [a]
|
||
list parser = gcastWith (inputParserInput @k) Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
||
GraphQLValue (VList values) -> for (zip [0..] values) \(index, value) ->
|
||
withPath (++[Index index]) $ pParser parser $ GraphQLValue value
|
||
JSONValue (A.Array values) -> for (zip [0..] $ toList values) \(index, value) ->
|
||
withPath (++[Index index]) $ pParser parser $ JSONValue value
|
||
-- List Input Coercion
|
||
--
|
||
-- According to section 3.11 of the GraphQL spec: iff the value
|
||
-- passed as an input to a list type is not a list and not the
|
||
-- null value, then the result of input coercion is a list of
|
||
-- size one, where the single item value is the result of input
|
||
-- coercion for the list’s item type on the provided value.
|
||
--
|
||
-- We need to explicitly test for VNull here, otherwise we could
|
||
-- be returning `[null]` if the parser accepts a null value,
|
||
-- which would contradict the spec.
|
||
GraphQLValue VNull -> parseError "expected a list, but found null"
|
||
JSONValue A.Null -> parseError "expected a list, but found null"
|
||
other -> fmap pure $ withPath (++[Index 0]) $ pParser parser other
|
||
}
|
||
where
|
||
schemaType = NonNullable $ TList $ pType parser
|
||
|
||
object
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> InputFieldsParser m a
|
||
-> Parser 'Input m a
|
||
object name description parser = Parser
|
||
{ pType = schemaType
|
||
, pParser = peelVariable (Just $ toGraphQLType schemaType) >=> \case
|
||
GraphQLValue (VObject fields) -> parseFields $ GraphQLValue <$> fields
|
||
JSONValue (A.Object fields) -> do
|
||
translatedFields <- M.fromList <$> for (M.toList fields) \(key, val) -> do
|
||
name' <- mkName key `onNothing` parseError
|
||
("variable value contains object with key " <> key <<> ", which is not a legal GraphQL name")
|
||
pure (name', JSONValue val)
|
||
parseFields translatedFields
|
||
other -> typeMismatch name "an object" other
|
||
}
|
||
where
|
||
schemaType = NonNullable $ TNamed $ mkDefinition name description $
|
||
TIInputObject (InputObjectInfo (ifDefinitions parser))
|
||
fieldNames = S.fromList (dName <$> ifDefinitions parser)
|
||
parseFields fields = do
|
||
-- check for extraneous fields here, since the InputFieldsParser just
|
||
-- handles parsing the fields it cares about
|
||
for_ (M.keys fields) \fieldName ->
|
||
unless (fieldName `S.member` fieldNames) $ withPath (++[Key (unName fieldName)]) $
|
||
parseError $ "field " <> dquote fieldName <> " not found in type: " <> squote name
|
||
ifParser parser fields
|
||
|
||
{- Note [Optional fields and nullability]
|
||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
GraphQL conflates optional fields and nullability. A field of a GraphQL input
|
||
object (or an argument to a selection set field, which is really the same thing)
|
||
is optional if and only if its type is nullable. It’s worth fully spelling out
|
||
the implications here: if a field (or argument) is non-nullable, it /cannot/ be
|
||
omitted. So, for example, suppose we had a table type like this:
|
||
|
||
type article {
|
||
comments(limit: Int!): [comment!]!
|
||
}
|
||
|
||
Since we made `limit` non-nullable, it is /illegal/ to omit the argument. You’d
|
||
/always/ have to provide some value---and that isn’t what we want, because the
|
||
row limit should be optional. We have no choice but to make it nullable:
|
||
|
||
type article {
|
||
comments(limit: Int): [comment!]!
|
||
}
|
||
|
||
But this feels questionable. Should we really accept `null` values for `limit`?
|
||
That is, should this query be legal?
|
||
|
||
{
|
||
articles {
|
||
comments(limit: null) { ... }
|
||
}
|
||
}
|
||
|
||
A tempting answer to that question is “yes”: we can just treat a `null` value
|
||
for any optional field as precisely equivalent to leaving the field off
|
||
entirely. That is, any field with no default value really just has a default
|
||
value of `null`. Unfortunately, this approach turns out to be a really bad idea.
|
||
It’s all too easy to write something like
|
||
|
||
mutation delete_article_by_id($article_id: Int) {
|
||
delete_articles(where: {id: {eq: $article_id}})
|
||
}
|
||
|
||
then accidentally misspell `article_id` in the variables payload, and now you’ve
|
||
deleted all the articles in your database. Very bad.
|
||
|
||
So we’d really like to be able to have a way to say “this field is optional, but
|
||
`null` is not a legal value,” but at first it seems like the GraphQL spec ties
|
||
our hands. Fortunately, there is a way out. The spec explicitly permits
|
||
distinguishing between the following two situations:
|
||
|
||
comments { ... }
|
||
comments(limit: null) { ... }
|
||
|
||
That is, the spec allows implementations to behave differently depending on
|
||
whether an argument was omitted or whether its value was `null`. This is spelled
|
||
out in a few different places in the spec, but §3.10 Input Objects
|
||
<http://spec.graphql.org/June2018/#sec-Input-Objects> is the most explicit:
|
||
|
||
> If the value `null` was provided for an input object field, and the field’s
|
||
> type is not a non‐null type, an entry in the coerced unordered map is given
|
||
> the value `null`. In other words, there is a semantic difference between the
|
||
> explicitly provided value `null` versus having not provided a value.
|
||
|
||
Note that this is only allowed for fields that don’t have any default value! If
|
||
the field were declared with an explicit `null` default value, like
|
||
|
||
type article {
|
||
comments(limit: Int = null): [comment!]!
|
||
}
|
||
|
||
then it would not be legal to distinguish the two cases. Yes, this is all
|
||
terribly subtle.
|
||
|
||
Okay. So armed with that knowledge, what do we do about it? We offer three
|
||
different combinators for parsing input fields:
|
||
|
||
1. `field` — Defines a field with no default value. The field’s nullability is
|
||
taken directly from the nullability of the field’s value parser.
|
||
2. `fieldOptional` — Defines a field with no default value that is always
|
||
nullable. Returns Nothing if (and only if!) the field is omitted.
|
||
3. `fieldWithDefault` — Defines a field with a default value.
|
||
|
||
The last of the three, `fieldWithDefault`, is actually the simplest. It
|
||
corresponds to a field with a default value, and the underlying value parser
|
||
will /always/ be called. If the field is omitted, the value parser is called
|
||
with the default value. (This makes it impossible to distinguish omitted fields
|
||
from those explicitly passed the default value, as mandated by the spec.) Use
|
||
`fieldWithDefault` for any field or argument with a non-`null` default value.
|
||
|
||
`field` is also fairly straightforward. It always calls its value parser, so if
|
||
the field is omitted, it calls it with a value of `null`. Notably, there is no
|
||
special handling for non-nullable fields, since the underlying parser will raise
|
||
an error in that case, anyway. Use `field` for required fields, and combine
|
||
`field` with `nullable` for optional fields with a default value of `null`.
|
||
|
||
`fieldOptional` is the most interesting. Unlike `field` and `fieldWithDefault`,
|
||
`fieldOptional` does not call its underlying value parser if the field is not
|
||
provided; it simply returns Nothing. If a value /is/ provided, it is passed
|
||
along without modification. This yields an interesting interaction when the
|
||
value parser does not actually accept nulls, such as a parser like this:
|
||
|
||
fieldOptional $$(litName "limit") Nothing int
|
||
|
||
This corresponds to the `limit` field from our original example. If the field is
|
||
omitted, the `int` parser is not called, and the field parser just returns
|
||
Nothing. But if a value of `null` is explicitly provided, it is forwarded to the
|
||
`int` parser, which then rejects it with a parse error, since it does not accept
|
||
nulls. This is exactly the behavior we want.
|
||
|
||
This semantics can appear confusing. We end up with a field with a nullable type
|
||
for which `null` is not a legal value! A strange interpretation of “nullable”,
|
||
indeed. But realize that the nullability really means “optional”, and the
|
||
behavior makes more sense.
|
||
|
||
As a final point, note that similar behavior can be obtained with
|
||
`fieldWithDefault`. The following creates a boolean field that defaults to
|
||
`false` and rejects `null` values:
|
||
|
||
fieldWithDefault $$(litName "includeDeprecated") Nothing (VBoolean False) boolean
|
||
|
||
This is a perfectly reasonable thing to do for exactly the same rationale behind
|
||
the use of `fieldOptional` above. -}
|
||
|
||
-- | Creates a parser for an input field. The field’s nullability is determined
|
||
-- by the nullability of the given value parser; see Note [Optional fields and
|
||
-- nullability] for more details.
|
||
field
|
||
:: (MonadParse m, 'Input <: k)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Parser k m a
|
||
-> InputFieldsParser m a
|
||
field name description parser = case pType parser of
|
||
NonNullable typ -> InputFieldsParser
|
||
{ ifDefinitions = [mkDefinition name description $ IFRequired typ]
|
||
, ifParser = \ values -> withPath (++[Key (unName name)]) do
|
||
value <- onNothing (M.lookup name values) $
|
||
parseError ("missing required field " <>> name)
|
||
pInputParser parser value
|
||
}
|
||
-- nullable fields just have an implicit default value of `null`
|
||
Nullable _ -> fieldWithDefault name description VNull parser
|
||
|
||
-- | Creates a parser for an input field with the given default value. The
|
||
-- resulting field will always be nullable, even if the underlying parser
|
||
-- rejects `null` values; see Note [Optional fields and nullability] for more
|
||
-- details.
|
||
fieldWithDefault
|
||
:: (MonadParse m, 'Input <: k)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Value Void -- ^ default value
|
||
-> Parser k m a
|
||
-> InputFieldsParser m a
|
||
fieldWithDefault name description defaultValue parser = InputFieldsParser
|
||
{ ifDefinitions = [mkDefinition name description $ IFOptional (pType parser) (Just defaultValue)]
|
||
, ifParser = M.lookup name >>> withPath (++[Key (unName name)]) . \case
|
||
Just value -> peelVariableWith True expectedType value >>= parseValue expectedType
|
||
Nothing -> pInputParser parser $ GraphQLValue $ literal defaultValue
|
||
}
|
||
where
|
||
expectedType = Just $ toGraphQLType $ pType parser
|
||
parseValue _ value = pInputParser parser value
|
||
{- See Note [Temporarily disabling query plan caching] in
|
||
Hasura.GraphQL.Execute.Plan.
|
||
|
||
parseValue expectedType value = case value of
|
||
VVariable (var@Variable { vInfo, vValue }) -> do
|
||
typeCheck expectedType var
|
||
-- This case is tricky: if we get a nullable variable, we have to
|
||
-- pessimistically mark the query non-reusable, regardless of its
|
||
-- contents. Why? Well, suppose we have a type like
|
||
--
|
||
-- type Foo {
|
||
-- bar(arg: Int = 42): String
|
||
-- }
|
||
--
|
||
-- and suppose we receive the following query:
|
||
--
|
||
-- query blah($var: Int) {
|
||
-- foo {
|
||
-- bar(arg: $var)
|
||
-- }
|
||
-- }
|
||
--
|
||
-- Suppose no value is provided for $var, so it defaults to null. When
|
||
-- we parse the arg field, we see it has a default value, so we
|
||
-- substitute 42 for null and carry on. But now we’ve discarded the
|
||
-- information that this value came from a variable at all, so if we
|
||
-- cache the query plan, changes to the variable will be ignored, since
|
||
-- we’ll always use 42!
|
||
--
|
||
-- Note that the problem doesn’t go away even if $var has a non-null
|
||
-- value. In that case, we’d simply have flipped the problem around: now
|
||
-- our cached query plan will do the wrong thing if $var *is* null,
|
||
-- since we won’t know to substitute 42.
|
||
--
|
||
-- Theoretically, we could be smarter here: we could record a sort of
|
||
-- “derived variable reference” that includes a new default value. But
|
||
-- that would be more complicated, so for now we don’t do that.
|
||
case vInfo of
|
||
VIRequired _ -> pInputParser parser value
|
||
VIOptional _ _ -> markNotReusable *> parseValue expectedType (literal vValue)
|
||
VNull -> pInputParser parser $ literal defaultValue
|
||
_ -> pInputParser parser value
|
||
-}
|
||
|
||
-- | Creates a parser for a nullable field with no default value. If the field
|
||
-- is omitted, the provided parser /will not be called/. This allows a field to
|
||
-- distinguish an omitted field from a field supplied with @null@ (which is
|
||
-- permitted by the GraphQL specification); see Note [Optional fields and
|
||
-- nullability] for more details.
|
||
--
|
||
-- If you want a field with a default value of @null@, combine 'field' with
|
||
-- 'nullable', instead.
|
||
fieldOptional
|
||
:: (MonadParse m, 'Input <: k)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Parser k m a
|
||
-> InputFieldsParser m (Maybe a)
|
||
fieldOptional name description parser = InputFieldsParser
|
||
{ ifDefinitions = [mkDefinition name description $
|
||
IFOptional (nullableType $ pType parser) Nothing]
|
||
, ifParser = M.lookup name >>> withPath (++[Key (unName name)]) .
|
||
traverse (pInputParser parser <=< peelVariable expectedType)
|
||
}
|
||
where
|
||
expectedType = Just $ toGraphQLType $ nullableType $ pType parser
|
||
|
||
-- | A variant of 'selectionSetObject' which doesn't implement any interfaces
|
||
selectionSet
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> [FieldParser m a]
|
||
-> Parser 'Output m (OMap.InsOrdHashMap Name (ParsedSelection a))
|
||
selectionSet name desc fields = selectionSetObject name desc fields []
|
||
|
||
safeSelectionSet
|
||
:: (MonadError QErr n, MonadParse m)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> [FieldParser m a]
|
||
-> n (Parser 'Output m (OMap.InsOrdHashMap Name (ParsedSelection a)))
|
||
safeSelectionSet name desc fields
|
||
| S.null duplicates = pure $ selectionSetObject name desc fields []
|
||
| otherwise = throw500 $ "found duplicate fields in selection set: " <> T.intercalate ", " (unName <$> toList duplicates)
|
||
where
|
||
duplicates = LE.duplicates $ getName . fDefinition <$> fields
|
||
|
||
-- Should this rather take a non-empty `FieldParser` list?
|
||
-- See also Note [Selectability of tables].
|
||
selectionSetObject
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> [FieldParser m a]
|
||
-- ^ Fields of this object, including any fields that are required from the
|
||
-- interfaces that it implements. Note that we can't derive those fields from
|
||
-- the list of interfaces (next argument), because the types of the fields of
|
||
-- the object are only required to be *subtypes* of the types of the fields of
|
||
-- the interfaces it implements.
|
||
-> [Parser 'Output m b]
|
||
-- ^ Interfaces implemented by this object;
|
||
-- see Note [The interfaces story] in Hasura.GraphQL.Parser.Schema.
|
||
-> Parser 'Output m (OMap.InsOrdHashMap Name (ParsedSelection a))
|
||
selectionSetObject name description parsers implementsInterfaces = Parser
|
||
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
||
TIObject $ ObjectInfo (map fDefinition parsers) interfaces
|
||
, pParser = \input -> withPath (++[Key "selectionSet"]) do
|
||
-- Not all fields have a selection set, but if they have one, it
|
||
-- must contain at least one field. The GraphQL parser returns a
|
||
-- list to represent this: an empty list indicates there was no
|
||
-- selection set, as an empty set is rejected outright.
|
||
-- Arguably, this would be better represented by a `Maybe
|
||
-- (NonEmpty a)`.
|
||
-- The parser can't know whether a given field needs a selection
|
||
-- set or not; but if we're in this function, it means that yes:
|
||
-- this field needs a selection set, and if none was provided,
|
||
-- we must fail.
|
||
when (null input) $
|
||
parseError $ "missing selection set for " <>> name
|
||
|
||
-- TODO(PDV) This probably accepts invalid queries, namely queries that use
|
||
-- type names that do not exist.
|
||
fields <- collectFields (name:parsedInterfaceNames) input
|
||
for fields \selectionField@Field{ _fName, _fAlias } -> if
|
||
| _fName == $$(litName "__typename") ->
|
||
pure $ SelectTypename name
|
||
| Just parser <- M.lookup _fName parserMap ->
|
||
withPath (++[Key (unName _fName)]) $
|
||
SelectField <$> parser selectionField
|
||
| otherwise ->
|
||
withPath (++[Key (unName _fName)]) $
|
||
parseError $ "field " <> _fName <<> " not found in type: " <> squote name
|
||
}
|
||
where
|
||
parserMap = parsers
|
||
& map (\FieldParser{ fDefinition, fParser } -> (getName fDefinition, fParser))
|
||
& M.fromList
|
||
interfaces = mapMaybe (getInterfaceInfo . pType) implementsInterfaces
|
||
parsedInterfaceNames = fmap getName interfaces
|
||
|
||
selectionSetInterface
|
||
:: (MonadParse n, Traversable t)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> [FieldParser n a]
|
||
-- ^ Fields defined in this interface
|
||
-> t (Parser 'Output n b)
|
||
-- ^ Parsers for the object types that implement this interface; see
|
||
-- Note [The interfaces story] in Hasura.GraphQL.Parser.Schema for details.
|
||
-> Parser 'Output n (t b)
|
||
selectionSetInterface name description fields objectImplementations = Parser
|
||
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
||
TIInterface $ InterfaceInfo (map fDefinition fields) objects
|
||
, pParser = \input -> for objectImplementations (($ input) . pParser)
|
||
-- Note: This is somewhat suboptimal, since it parses a query against every
|
||
-- possible object implementing this interface, possibly duplicating work for
|
||
-- fields defined on the interface itself.
|
||
--
|
||
-- Furthermore, in our intended use case (Relay), based on a field argument,
|
||
-- we can decide which object we are about to retrieve, so in theory we could
|
||
-- save some work by only parsing against that object type. But it’s still
|
||
-- useful to parse against all of them, since it checks the validity of any
|
||
-- fragments on the other types.
|
||
}
|
||
where
|
||
objects = catMaybes $ toList $ fmap (getObjectInfo . pType) objectImplementations
|
||
|
||
selectionSetUnion
|
||
:: (MonadParse n, Traversable t)
|
||
=> Name
|
||
-> Maybe Description
|
||
-> t (Parser 'Output n b) -- ^ The member object types.
|
||
-> Parser 'Output n (t b)
|
||
selectionSetUnion name description objectImplementations = Parser
|
||
{ pType = Nullable $ TNamed $ mkDefinition name description $
|
||
TIUnion $ UnionInfo objects
|
||
, pParser = \input -> for objectImplementations (($ input) . pParser)
|
||
}
|
||
where
|
||
objects = catMaybes $ toList $ fmap (getObjectInfo . pType) objectImplementations
|
||
|
||
-- | An "escape hatch" that doesn't validate anything and just gives the
|
||
-- requested selection set. This is unsafe because it does not check the
|
||
-- selection set for validity.
|
||
unsafeRawParser
|
||
:: forall m
|
||
. MonadParse m
|
||
=> Type 'Output
|
||
-> Parser 'Output m (SelectionSet NoFragments Variable)
|
||
unsafeRawParser tp = Parser
|
||
{ pType = tp
|
||
, pParser = pure
|
||
}
|
||
|
||
unsafeRawField
|
||
:: forall m
|
||
. MonadParse m
|
||
=> Definition FieldInfo
|
||
-> FieldParser m (Field NoFragments Variable)
|
||
unsafeRawField def = FieldParser
|
||
{ fDefinition = def
|
||
, fParser = pure
|
||
}
|
||
|
||
-- | Builds a 'FieldParser' for a field that does not take a subselection set,
|
||
-- i.e. a field that returns a scalar or enum. The field’s type is taken from
|
||
-- the provided 'Parser', but the 'Parser' is not otherwise used.
|
||
--
|
||
-- See also Note [The delicate balance of GraphQL kinds] in "Hasura.GraphQL.Parser.Schema".
|
||
selection
|
||
:: forall m a b
|
||
. MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> InputFieldsParser m a -- ^ parser for the input arguments
|
||
-> Parser 'Both m b -- ^ type of the result
|
||
-> FieldParser m a
|
||
selection name description argumentsParser resultParser =
|
||
rawSelection name description argumentsParser resultParser
|
||
<&> \(_alias, _args, a) -> a
|
||
|
||
rawSelection
|
||
:: forall m a b
|
||
. MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> InputFieldsParser m a -- ^ parser for the input arguments
|
||
-> Parser 'Both m b -- ^ type of the result
|
||
-> FieldParser m (Maybe Name, HashMap Name (Value Variable), a)
|
||
-- ^ alias provided (if any), and the arguments
|
||
rawSelection name description argumentsParser resultParser = FieldParser
|
||
{ fDefinition = mkDefinition name description $
|
||
FieldInfo (ifDefinitions argumentsParser) (pType resultParser)
|
||
, fParser = \Field{ _fAlias, _fArguments, _fSelectionSet } -> do
|
||
unless (null _fSelectionSet) $
|
||
parseError "unexpected subselection set for non-object field"
|
||
-- check for extraneous arguments here, since the InputFieldsParser just
|
||
-- handles parsing the fields it cares about
|
||
for_ (M.keys _fArguments) \argumentName ->
|
||
unless (argumentName `S.member` argumentNames) $
|
||
parseError $ name <<> " has no argument named " <>> argumentName
|
||
fmap (_fAlias, _fArguments, ) $ withPath (++[Key "args"]) $ ifParser argumentsParser $ GraphQLValue <$> _fArguments
|
||
}
|
||
where
|
||
argumentNames = S.fromList (dName <$> ifDefinitions argumentsParser)
|
||
|
||
-- | Builds a 'FieldParser' for a field that takes a subselection set, i.e. a
|
||
-- field that returns an object.
|
||
--
|
||
-- See also Note [The delicate balance of GraphQL kinds] in "Hasura.GraphQL.Parser.Schema".
|
||
subselection
|
||
:: forall m a b
|
||
. MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> InputFieldsParser m a -- ^ parser for the input arguments
|
||
-> Parser 'Output m b -- ^ parser for the subselection set
|
||
-> FieldParser m (a, b)
|
||
subselection name description argumentsParser bodyParser =
|
||
rawSubselection name description argumentsParser bodyParser
|
||
<&> \(_alias, _args, a, b) -> (a, b)
|
||
|
||
rawSubselection
|
||
:: forall m a b
|
||
. MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> InputFieldsParser m a -- ^ parser for the input arguments
|
||
-> Parser 'Output m b -- ^ parser for the subselection set
|
||
-> FieldParser m (Maybe Name, HashMap Name (Value Variable), a, b)
|
||
rawSubselection name description argumentsParser bodyParser = FieldParser
|
||
{ fDefinition = mkDefinition name description $
|
||
FieldInfo (ifDefinitions argumentsParser) (pType bodyParser)
|
||
, fParser = \Field{ _fAlias, _fArguments, _fSelectionSet } -> do
|
||
-- check for extraneous arguments here, since the InputFieldsParser just
|
||
-- handles parsing the fields it cares about
|
||
for_ (M.keys _fArguments) \argumentName ->
|
||
unless (argumentName `S.member` argumentNames) $
|
||
parseError $ name <<> " has no argument named " <>> argumentName
|
||
(_fAlias,_fArguments,,) <$> withPath (++[Key "args"]) (ifParser argumentsParser $ GraphQLValue <$> _fArguments)
|
||
<*> pParser bodyParser _fSelectionSet
|
||
}
|
||
where
|
||
argumentNames = S.fromList (dName <$> ifDefinitions argumentsParser)
|
||
|
||
-- | A shorthand for a 'selection' that takes no arguments.
|
||
selection_
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Parser 'Both m a -- ^ type of the result
|
||
-> FieldParser m ()
|
||
selection_ name description = selection name description (pure ())
|
||
|
||
-- | A shorthand for a 'subselection' that takes no arguments.
|
||
subselection_
|
||
:: MonadParse m
|
||
=> Name
|
||
-> Maybe Description
|
||
-> Parser 'Output m a -- ^ parser for the subselection set
|
||
-> FieldParser m a
|
||
subselection_ name description bodyParser =
|
||
snd <$> subselection name description (pure ()) bodyParser
|
||
|
||
-- -----------------------------------------------------------------------------
|
||
-- helpers
|
||
|
||
valueToJSON :: MonadParse m => GType -> InputValue Variable -> m A.Value
|
||
valueToJSON expected = peelVariable (Just expected) >=> valueToJSON'
|
||
where
|
||
valueToJSON' = \case
|
||
JSONValue j -> pure j
|
||
GraphQLValue g -> graphQLToJSON g
|
||
graphQLToJSON = \case
|
||
VNull -> pure A.Null
|
||
VInt i -> pure $ A.toJSON i
|
||
VFloat f -> pure $ A.toJSON f
|
||
VString t -> pure $ A.toJSON t
|
||
VBoolean b -> pure $ A.toJSON b
|
||
VEnum (EnumValue n) -> pure $ A.toJSON n
|
||
VList values -> A.toJSON <$> traverse graphQLToJSON values
|
||
VObject objects -> A.toJSON <$> traverse graphQLToJSON objects
|
||
VVariable variable -> valueToJSON' $ absurd <$> vValue variable
|
||
|
||
jsonToGraphQL :: (MonadError Text m) => A.Value -> m (Value Void)
|
||
jsonToGraphQL = \case
|
||
A.Null -> pure VNull
|
||
A.Bool val -> pure $ VBoolean val
|
||
A.String val -> pure $ VString val
|
||
A.Number val -> case toBoundedInteger val of
|
||
Just intVal -> pure $ VInt $ fromIntegral @Int64 intVal
|
||
Nothing -> pure $ VFloat val
|
||
A.Array vals -> VList <$> traverse jsonToGraphQL (toList vals)
|
||
A.Object vals -> VObject . M.fromList <$> for (M.toList vals) \(key, val) -> do
|
||
graphQLName <- onNothing (mkName key) $ throwError $
|
||
"variable value contains object with key " <> key <<> ", which is not a legal GraphQL name"
|
||
(graphQLName,) <$> jsonToGraphQL val
|
||
|
||
peelVariable :: MonadParse m => Maybe GType -> InputValue Variable -> m (InputValue Variable)
|
||
peelVariable = peelVariableWith False
|
||
|
||
peelVariableWith :: MonadParse m => Bool -> Maybe GType -> InputValue Variable -> m (InputValue Variable)
|
||
peelVariableWith hasLocationDefaultValue expected = \case
|
||
GraphQLValue (VVariable var) -> do
|
||
onJust expected \locationType -> typeCheck hasLocationDefaultValue locationType var
|
||
markNotReusable
|
||
pure $ absurd <$> vValue var
|
||
value -> pure value
|
||
|
||
typeCheck :: MonadParse m => Bool -> GType -> Variable -> m ()
|
||
typeCheck hasLocationDefaultValue locationType variable@Variable { vInfo, vType } =
|
||
unless (isVariableUsageAllowed hasLocationDefaultValue locationType variable) $ parseError
|
||
$ "variable " <> dquote (getName vInfo) <> " is declared as "
|
||
<> showGT vType <> ", but used where "
|
||
<> showGT locationType <> " is expected"
|
||
|
||
typeMismatch :: MonadParse m => Name -> Text -> InputValue Variable -> m a
|
||
typeMismatch name expected given = parseError $
|
||
"expected " <> expected <> " for type " <> name <<> ", but found " <> describeValue given
|
||
|
||
describeValue :: InputValue Variable -> Text
|
||
describeValue = describeValueWith (describeValueWith absurd . vValue)
|
||
|
||
describeValueWith :: (var -> Text) -> InputValue var -> Text
|
||
describeValueWith describeVariable = \case
|
||
JSONValue jval -> describeJSON jval
|
||
GraphQLValue gval -> describeGraphQL gval
|
||
where
|
||
describeJSON = \case
|
||
A.Null -> "null"
|
||
A.Bool _ -> "a boolean"
|
||
A.String _ -> "a string"
|
||
A.Number _ -> "a number"
|
||
A.Array _ -> "a list"
|
||
A.Object _ -> "an object"
|
||
describeGraphQL = \case
|
||
VVariable var -> describeVariable var
|
||
VInt _ -> "an integer"
|
||
VFloat _ -> "a float"
|
||
VString _ -> "a string"
|
||
VBoolean _ -> "a boolean"
|
||
VNull -> "null"
|
||
VEnum _ -> "an enum value"
|
||
VList _ -> "a list"
|
||
VObject _ -> "an object"
|
||
|
||
-- | Checks whether the type of a variable is compatible with the type
|
||
-- at the location at which it is used. This is an implementation of
|
||
-- the function described in section 5.8.5 of the spec:
|
||
-- http://spec.graphql.org/June2018/#sec-All-Variable-Usages-are-Allowed
|
||
-- No input type coercion is allowed between variables: coercion
|
||
-- rules only allow when translating a value from a literal. It is
|
||
-- therefore not allowed to use an Int variable at a Float location,
|
||
-- despite the fact that it is legal to use an Int literal at a
|
||
-- Float location.
|
||
-- Furthermore, it's also worth noting that there's one tricky case
|
||
-- where we might allow a nullable variable at a non-nullable
|
||
-- location: when either side has a non-null default value. That's
|
||
-- because GraphQL conflates nullability and optinal fields (see
|
||
-- Note [Optional fields and nullability] for more details).
|
||
isVariableUsageAllowed
|
||
:: Bool -- ^ does the location have a default value
|
||
-> GType -- ^ the location type
|
||
-> Variable -- ^ the variable
|
||
-> Bool
|
||
isVariableUsageAllowed hasLocationDefaultValue locationType variable
|
||
| isNullable locationType = areTypesCompatible locationType variableType
|
||
| not $ isNullable variableType = areTypesCompatible locationType variableType
|
||
| hasLocationDefaultValue = areTypesCompatible locationType variableType
|
||
| hasNonNullDefault variable = areTypesCompatible locationType variableType
|
||
| otherwise = False
|
||
where
|
||
areTypesCompatible = compareTypes `on` \case
|
||
TypeNamed _ n -> TypeNamed (Nullability True) n
|
||
TypeList _ n -> TypeList (Nullability True) n
|
||
variableType = vType variable
|
||
hasNonNullDefault = vInfo >>> \case
|
||
VIRequired _ -> False
|
||
VIOptional _ value -> value /= VNull
|
||
compareTypes = curry \case
|
||
(TypeList lNull lType, TypeList vNull vType)
|
||
-> checkNull lNull vNull && areTypesCompatible lType vType
|
||
(TypeNamed lNull lType, TypeNamed vNull vType)
|
||
-> checkNull lNull vNull && lType == vType
|
||
_ -> False
|
||
checkNull (Nullability expectedNull) (Nullability actualNull) =
|
||
expectedNull || not actualNull
|