graphql-engine/server/src-lib/Hasura/Backends/Postgres/Instances/Schema.hs
Vladimir Ciobanu da8f6981d4 server: reduce the number of backend dispatches
Fixes https://github.com/hasura/graphql-engine-mono/issues/712

Main point of interest: the `Hasura.SQL.Backend` module.

This PR creates an `Exists` type indexed by indexed type and packed constraint while hiding all of its complexity by not exporting the constructor.

Existential constructors/types which are no longer (directly) existential:
- [X] BackendSourceInfo :: BackendSourceInfo
- [x] BackendSourceMetadata :: BackendSourceMetadata
- [x] MOSourceObjId :: MetadatObjId
- [x] SOSourceObj :: SchemaObjId
- [x] RFDB :: RootField
- [x] LQP :: LiveQueryPlan
- [x] ExecutionStep :: ExecStepDB

This PR also removes ALL usages of `Typeable.cast` from our codebase. We still need to derive `Typeable` in a few places in order to be able to derive `Data` in one place. I have not dug deeper to see why this is needed.

GitOrigin-RevId: bb47e957192e4bb0af4c4116aee7bb92f7983445
2021-03-15 13:03:55 +00:00

596 lines
30 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS_GHC -fno-warn-orphans #-}
module Hasura.Backends.Postgres.Instances.Schema () where
import Hasura.Prelude
import qualified Data.Aeson as J
import qualified Data.HashMap.Strict as Map
import qualified Data.HashMap.Strict.Extended as M
import qualified Data.HashMap.Strict.InsOrd.Extended as OMap
import qualified Data.List.NonEmpty as NE
import qualified Data.Text as T
import qualified Database.PG.Query as Q
import qualified Language.GraphQL.Draft.Syntax as G
import Data.Parser.JSONPath
import Data.Text.Extended
import qualified Hasura.GraphQL.Parser as P
import qualified Hasura.GraphQL.Schema.Backend as BS
import qualified Hasura.GraphQL.Schema.Build as GSB
import qualified Hasura.RQL.IR.Select as IR
import qualified Hasura.RQL.IR.Update as IR
import qualified Hasura.SQL.AnyBackend as AB
import Hasura.Backends.Postgres.SQL.DML as PG hiding (CountType)
import Hasura.Backends.Postgres.SQL.Types as PG hiding (FunctionName, TableName)
import Hasura.Backends.Postgres.SQL.Value as PG
import Hasura.GraphQL.Context
import Hasura.GraphQL.Parser hiding (EnumValueInfo, field)
import Hasura.GraphQL.Parser.Internal.Parser hiding (field)
import Hasura.GraphQL.Schema.Backend (BackendSchema, ComparisonExp,
MonadBuildSchema)
import Hasura.GraphQL.Schema.Common
import Hasura.GraphQL.Schema.Select
import Hasura.GraphQL.Schema.Table
import Hasura.RQL.Types
import Hasura.SQL.Types
----------------------------------------------------------------
-- BackendSchema instance
instance BackendSchema 'Postgres where
-- top level parsers
buildTableQueryFields = GSB.buildTableQueryFields
buildTableRelayQueryFields = buildTableRelayQueryFields
buildTableInsertMutationFields = GSB.buildTableInsertMutationFields
buildTableUpdateMutationFields = GSB.buildTableUpdateMutationFields
buildTableDeleteMutationFields = GSB.buildTableDeleteMutationFields
buildFunctionQueryFields = GSB.buildFunctionQueryFields
buildFunctionRelayQueryFields = buildFunctionRelayQueryFields
buildFunctionMutationFields = GSB.buildFunctionMutationFields
-- backend extensions
relayExtension = const $ Just ()
nodesAggExtension = const $ Just ()
-- indivdual components
columnParser = columnParser
jsonPathArg = jsonPathArg
orderByOperators = orderByOperators
comparisonExps = comparisonExps
updateOperators = updateOperators
offsetParser = offsetParser
mkCountType = mkCountType
aggregateOrderByCountType = PG.PGInteger
computedField = computedFieldPG
node = nodePG
tableDistinctOn = tableDistinctOn
remoteRelationshipField = remoteRelationshipFieldPG
-- SQL literals
columnDefaultValue = const PG.columnDefaultValue
----------------------------------------------------------------
-- Top level parsers
buildTableRelayQueryFields
:: MonadBuildSchema 'Postgres r m n
=> SourceName
-> SourceConfig 'Postgres
-> TableName 'Postgres
-> TableInfo 'Postgres
-> G.Name
-> NESeq (ColumnInfo 'Postgres)
-> SelPermInfo 'Postgres
-> m (Maybe (FieldParser n (QueryRootField UnpreparedValue)))
buildTableRelayQueryFields sourceName sourceInfo tableName tableInfo gqlName pkeyColumns selPerms = do
let
mkRF = RFDB sourceName
. AB.mkAnyBackend
. SourceConfigWith sourceInfo
. QDBR
fieldName = gqlName <> $$(G.litName "_connection")
fieldDesc = Just $ G.Description $ "fetch data from the table: " <>> tableName
optionalFieldParser (mkRF . QDBConnection) $ selectTableConnection tableName fieldName fieldDesc pkeyColumns selPerms
buildFunctionRelayQueryFields
:: MonadBuildSchema 'Postgres r m n
=> SourceName
-> SourceConfig 'Postgres
-> FunctionName 'Postgres
-> FunctionInfo 'Postgres
-> TableName 'Postgres
-> NESeq (ColumnInfo 'Postgres)
-> SelPermInfo 'Postgres
-> m (Maybe (FieldParser n (QueryRootField UnpreparedValue)))
buildFunctionRelayQueryFields sourceName sourceInfo functionName functionInfo tableName pkeyColumns selPerms = do
funcName <- functionGraphQLName @'Postgres functionName `onLeft` throwError
let
mkRF = RFDB sourceName
. AB.mkAnyBackend
. SourceConfigWith sourceInfo
. QDBR
fieldName = funcName <> $$(G.litName "_connection")
fieldDesc = Just $ G.Description $ "execute function " <> functionName <<> " which returns " <>> tableName
optionalFieldParser (mkRF . QDBConnection) $ selectFunctionConnection functionInfo fieldName fieldDesc pkeyColumns selPerms
----------------------------------------------------------------
-- Individual components
columnParser
:: (MonadSchema n m, MonadError QErr m)
=> ColumnType 'Postgres
-> G.Nullability
-> m (Parser 'Both n (Opaque (ColumnValue 'Postgres)))
columnParser columnType (G.Nullability isNullable) =
-- TODO(PDV): It might be worth memoizing this function even though it isnt
-- recursive simply for performance reasons, since its likely to be hammered
-- during schema generation. Need to profile to see whether or not its a win.
opaque . fmap (ColumnValue columnType) <$> case columnType of
ColumnScalar scalarType -> possiblyNullable scalarType <$> case scalarType of
PGInteger -> pure (PGValInteger <$> P.int)
PGBoolean -> pure (PGValBoolean <$> P.boolean)
PGFloat -> pure (PGValDouble <$> P.float)
PGText -> pure (PGValText <$> P.string)
PGVarchar -> pure (PGValVarchar <$> P.string)
PGJSON -> pure (PGValJSON . Q.JSON <$> P.json)
PGJSONB -> pure (PGValJSONB . Q.JSONB <$> P.jsonb)
-- For all other scalars, we convert the value to JSON and use the
-- FromJSON instance. The major upside is that this avoids having to write
-- new parsers for each custom type: if the JSON parser is sound, so will
-- this one, and it avoids the risk of having two separate ways of parsing
-- a value in the codebase, which could lead to inconsistencies.
_ -> do
name <- mkScalarTypeName scalarType
let schemaType = P.NonNullable $ P.TNamed $ P.mkDefinition name Nothing P.TIScalar
pure $ Parser
{ pType = schemaType
, pParser =
valueToJSON (P.toGraphQLType schemaType) >=>
either (parseErrorWith ParseFailed . qeError) pure . runAesonParser (parsePGValue scalarType)
}
ColumnEnumReference (EnumReference tableName enumValues) ->
case nonEmpty (Map.toList enumValues) of
Just enumValuesList -> do
name <- qualifiedObjectToName tableName <&> (<> $$(G.litName "_enum"))
pure $ possiblyNullable PGText $ P.enum name Nothing (mkEnumValue <$> enumValuesList)
Nothing -> throw400 ValidationFailed "empty enum values"
where
-- Sadly, this combinator is not sound in general, so we cant export it
-- for general-purpose use. If we did, someone could write this:
--
-- mkParameter <$> opaque do
-- n <- int
-- pure (mkIntColumnValue (n + 1))
--
-- Now wed end up with a UVParameter that has a variable in it, so wed
-- parameterize over it. But when wed reuse the plan, we wouldnt know to
-- increment the value by 1, so wed use the wrong value!
--
-- We could theoretically solve this by retaining a reference to the parser
-- itself and re-parsing each new value, using the saved parser, which
-- would admittedly be neat. But its more complicated, and it isnt clear
-- that it would actually be useful, so for now we dont support it.
opaque :: MonadParse m => Parser 'Both m a -> Parser 'Both m (Opaque a)
opaque parser = parser
{ pParser = \case
P.GraphQLValue (G.VVariable var@Variable{ vInfo, vValue }) -> do
typeCheck False (P.toGraphQLType $ pType parser) var
P.mkOpaque (Just vInfo) <$> pParser parser (absurd <$> vValue)
value -> P.mkOpaque Nothing <$> pParser parser value
}
possiblyNullable scalarType
| isNullable = fmap (fromMaybe $ PGNull scalarType) . P.nullable
| otherwise = id
mkEnumValue :: (EnumValue, EnumValueInfo) -> (P.Definition P.EnumValueInfo, PGScalarValue)
mkEnumValue (EnumValue value, EnumValueInfo description) =
( P.mkDefinition value (G.Description <$> description) P.EnumValueInfo
, PGValText $ G.unName value
)
jsonPathArg
:: MonadParse n
=> ColumnType 'Postgres
-> InputFieldsParser n (Maybe (IR.ColumnOp 'Postgres))
jsonPathArg columnType
| isScalarColumnWhere PG.isJSONType columnType =
P.fieldOptional fieldName description P.string `P.bindFields` fmap join . traverse toColExp
| otherwise = pure Nothing
where
fieldName = $$(G.litName "path")
description = Just "JSON select path"
toColExp textValue = case parseJSONPath textValue of
Left err -> parseError $ T.pack $ "parse json path error: " ++ err
Right [] -> pure Nothing
Right jPaths -> pure $ Just $ IR.ColumnOp PG.jsonbPathOp $ PG.SEArray $ map elToColExp jPaths
elToColExp (Key k) = PG.SELit k
elToColExp (Index i) = PG.SELit $ tshow i
orderByOperators
:: NonEmpty (Definition P.EnumValueInfo, (BasicOrderType 'Postgres, NullsOrderType 'Postgres))
orderByOperators = NE.fromList
[ ( define $$(G.litName "asc") "in ascending order, nulls last"
, (PG.OTAsc, PG.NLast)
)
, ( define $$(G.litName "asc_nulls_first") "in ascending order, nulls first"
, (PG.OTAsc, PG.NFirst)
)
, ( define $$(G.litName "asc_nulls_last") "in ascending order, nulls last"
, (PG.OTAsc, PG.NLast)
)
, ( define $$(G.litName "desc") "in descending order, nulls first"
, (PG.OTDesc, PG.NFirst)
)
, ( define $$(G.litName "desc_nulls_first") "in descending order, nulls first"
, (PG.OTDesc, PG.NFirst)
)
, ( define $$(G.litName "desc_nulls_last") "in descending order, nulls last"
, (PG.OTDesc, PG.NLast)
)
]
where
define name desc = P.mkDefinition name (Just desc) P.EnumValueInfo
comparisonExps
:: forall m n. (BackendSchema 'Postgres, MonadSchema n m, MonadError QErr m)
=> ColumnType 'Postgres -> m (Parser 'Input n [ComparisonExp 'Postgres])
comparisonExps = P.memoize 'comparisonExps \columnType -> do
geogInputParser <- geographyWithinDistanceInput
geomInputParser <- geometryWithinDistanceInput
ignInputParser <- intersectsGeomNbandInput
ingInputParser <- intersectsNbandGeomInput
-- see Note [Columns in comparison expression are never nullable]
typedParser <- columnParser columnType (G.Nullability False)
nullableTextParser <- columnParser (ColumnScalar PGText) (G.Nullability True)
textParser <- columnParser (ColumnScalar PGText) (G.Nullability False)
-- `lquery` represents a regular-expression-like pattern for matching `ltree` values.
lqueryParser <- columnParser (ColumnScalar PGLquery) (G.Nullability False)
-- `ltxtquery` represents a full-text-search-like pattern for matching `ltree` values.
ltxtqueryParser <- columnParser (ColumnScalar PGLtxtquery) (G.Nullability False)
maybeCastParser <- castExp columnType
let name = P.getName typedParser <> $$(G.litName "_comparison_exp")
desc = G.Description $ "Boolean expression to compare columns of type "
<> P.getName typedParser
<<> ". All fields are combined with logical 'AND'."
textListParser = P.list textParser `P.bind` traverse P.openOpaque
columnListParser = P.list typedParser `P.bind` traverse P.openOpaque
pure $ P.object name (Just desc) $ fmap catMaybes $ sequenceA $ concat
[ flip (maybe []) maybeCastParser $ \castParser ->
[ P.fieldOptional $$(G.litName "_cast") Nothing (ACast <$> castParser)
]
-- Common ops for all types
, [ P.fieldOptional $$(G.litName "_is_null") Nothing (bool ANISNOTNULL ANISNULL <$> P.boolean)
, P.fieldOptional $$(G.litName "_eq") Nothing (AEQ True . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_neq") Nothing (ANE True . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_in") Nothing (AIN . mkListLiteral columnType <$> columnListParser)
, P.fieldOptional $$(G.litName "_nin") Nothing (ANIN . mkListLiteral columnType <$> columnListParser)
]
-- Comparison ops for non Raster types
, guard (isScalarColumnWhere (/= PGRaster) columnType) *>
[ P.fieldOptional $$(G.litName "_gt") Nothing (AGT . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_lt") Nothing (ALT . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_gte") Nothing (AGTE . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_lte") Nothing (ALTE . mkParameter <$> typedParser)
]
-- Ops for Raster types
, guard (isScalarColumnWhere (== PGRaster) columnType) *>
[ P.fieldOptional $$(G.litName "_st_intersects_rast")
Nothing
(ASTIntersectsRast . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_intersects_nband_geom")
Nothing
(ASTIntersectsNbandGeom <$> ingInputParser)
, P.fieldOptional $$(G.litName "_st_intersects_geom_nband")
Nothing
(ASTIntersectsGeomNband <$> ignInputParser)
]
-- Ops for String like types
, guard (isScalarColumnWhere isStringType columnType) *>
[ P.fieldOptional $$(G.litName "_like")
(Just "does the column match the given pattern")
(ALIKE . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_nlike")
(Just "does the column NOT match the given pattern")
(ANLIKE . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_ilike")
(Just "does the column match the given case-insensitive pattern")
(AILIKE () . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_nilike")
(Just "does the column NOT match the given case-insensitive pattern")
(ANILIKE () . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_similar")
(Just "does the column match the given SQL regular expression")
(ASIMILAR . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_nsimilar")
(Just "does the column NOT match the given SQL regular expression")
(ANSIMILAR . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_regex")
(Just "does the column match the given POSIX regular expression, case sensitive")
(AREGEX . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_iregex")
(Just "does the column match the given POSIX regular expression, case insensitive")
(AIREGEX . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_nregex")
(Just "does the column NOT match the given POSIX regular expression, case sensitive")
(ANREGEX . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_niregex")
(Just "does the column NOT match the given POSIX regular expression, case insensitive")
(ANIREGEX . mkParameter <$> typedParser)
]
-- Ops for JSONB type
, guard (isScalarColumnWhere (== PGJSONB) columnType) *>
[ P.fieldOptional $$(G.litName "_contains")
(Just "does the column contain the given json value at the top level")
(AContains . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_contained_in")
(Just "is the column contained in the given json value")
(AContainedIn . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_has_key")
(Just "does the string exist as a top-level key in the column")
(AHasKey . mkParameter <$> nullableTextParser)
, P.fieldOptional $$(G.litName "_has_keys_any")
(Just "do any of these strings exist as top-level keys in the column")
(AHasKeysAny . mkListLiteral (ColumnScalar PGText) <$> textListParser)
, P.fieldOptional $$(G.litName "_has_keys_all")
(Just "do all of these strings exist as top-level keys in the column")
(AHasKeysAll . mkListLiteral (ColumnScalar PGText) <$> textListParser)
]
-- Ops for Geography type
, guard (isScalarColumnWhere (== PGGeography) columnType) *>
[ P.fieldOptional $$(G.litName "_st_intersects")
(Just "does the column spatially intersect the given geography value")
(ASTIntersects . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_d_within")
(Just "is the column within a given distance from the given geography value")
(ASTDWithinGeog <$> geogInputParser)
]
-- Ops for Geometry type
, guard (isScalarColumnWhere (== PGGeometry) columnType) *>
[ P.fieldOptional $$(G.litName "_st_contains")
(Just "does the column contain the given geometry value")
(ASTContains . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_crosses")
(Just "does the column cross the given geometry value")
(ASTCrosses . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_equals")
(Just "is the column equal to given geometry value (directionality is ignored)")
(ASTEquals . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_overlaps")
(Just "does the column 'spatially overlap' (intersect but not completely contain) the given geometry value")
(ASTOverlaps . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_touches")
(Just "does the column have atleast one point in common with the given geometry value")
(ASTTouches . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_within")
(Just "is the column contained in the given geometry value")
(ASTWithin . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_intersects")
(Just "does the column spatially intersect the given geometry value")
(ASTIntersects . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_st_d_within")
(Just "is the column within a given distance from the given geometry value")
(ASTDWithinGeom <$> geomInputParser)
]
-- Ops for Ltree type
, guard (isScalarColumnWhere (== PGLtree) columnType) *>
[ P.fieldOptional $$(G.litName "_ancestor")
(Just "is the left argument an ancestor of right (or equal)?")
(AAncestor . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_ancestor_any")
(Just "does array contain an ancestor of `ltree`?")
(AAncestorAny . mkListLiteral columnType <$> columnListParser)
, P.fieldOptional $$(G.litName "_descendant")
(Just "is the left argument a descendant of right (or equal)?")
(ADescendant . mkParameter <$> typedParser)
, P.fieldOptional $$(G.litName "_descendant_any")
(Just "does array contain a descendant of `ltree`?")
(ADescendantAny . mkListLiteral columnType <$> columnListParser)
, P.fieldOptional $$(G.litName "_matches")
(Just "does `ltree` match `lquery`?")
(AMatches . mkParameter <$> lqueryParser)
, P.fieldOptional $$(G.litName "_matches_any")
(Just "does `ltree` match any `lquery` in array?")
(AMatchesAny . mkListLiteral (ColumnScalar PGLquery) <$> textListParser)
, P.fieldOptional $$(G.litName "_matches_fulltext")
(Just "does `ltree` match `ltxtquery`?")
(AMatchesFulltext . mkParameter <$> ltxtqueryParser)
]
]
where
mkListLiteral :: ColumnType 'Postgres -> [ColumnValue 'Postgres] -> UnpreparedValue 'Postgres
mkListLiteral columnType columnValues = P.UVLiteral $ SETyAnn
(SEArray $ txtEncoder . cvValue <$> columnValues)
(mkTypeAnn $ CollectableTypeArray $ unsafePGColumnToBackend columnType)
castExp :: ColumnType 'Postgres -> m (Maybe (Parser 'Input n (CastExp 'Postgres (UnpreparedValue 'Postgres))))
castExp sourceType = do
let maybeScalars = case sourceType of
ColumnScalar PGGeography -> Just (PGGeography, PGGeometry)
ColumnScalar PGGeometry -> Just (PGGeometry, PGGeography)
_ -> Nothing
forM maybeScalars $ \(sourceScalar, targetScalar) -> do
sourceName <- mkScalarTypeName sourceScalar <&> (<> $$(G.litName "_cast_exp"))
targetName <- mkScalarTypeName targetScalar
targetOpExps <- comparisonExps $ ColumnScalar targetScalar
let field = P.fieldOptional targetName Nothing $ (targetScalar, ) <$> targetOpExps
pure $ P.object sourceName Nothing $ M.fromList . maybeToList <$> field
geographyWithinDistanceInput
:: forall m n. (MonadSchema n m, MonadError QErr m)
=> m (Parser 'Input n (DWithinGeogOp (UnpreparedValue 'Postgres)))
geographyWithinDistanceInput = do
geographyParser <- columnParser (ColumnScalar PGGeography) (G.Nullability False)
-- FIXME
-- It doesn't make sense for this value to be nullable; it only is for
-- backwards compatibility; if an explicit Null value is given, it will be
-- forwarded to the underlying SQL function, that in turns treat a null value
-- as an error. We can fix this by rejecting explicit null values, by marking
-- this field non-nullable in a future release.
booleanParser <- columnParser (ColumnScalar PGBoolean) (G.Nullability True)
floatParser <- columnParser (ColumnScalar PGFloat) (G.Nullability False)
pure $ P.object $$(G.litName "st_d_within_geography_input") Nothing $
DWithinGeogOp <$> (mkParameter <$> P.field $$(G.litName "distance") Nothing floatParser)
<*> (mkParameter <$> P.field $$(G.litName "from") Nothing geographyParser)
<*> (mkParameter <$> P.fieldWithDefault $$(G.litName "use_spheroid") Nothing (G.VBoolean True) booleanParser)
geometryWithinDistanceInput
:: forall m n. (MonadSchema n m, MonadError QErr m)
=> m (Parser 'Input n (DWithinGeomOp (UnpreparedValue 'Postgres)))
geometryWithinDistanceInput = do
geometryParser <- columnParser (ColumnScalar PGGeometry) (G.Nullability False)
floatParser <- columnParser (ColumnScalar PGFloat) (G.Nullability False)
pure $ P.object $$(G.litName "st_d_within_input") Nothing $
DWithinGeomOp <$> (mkParameter <$> P.field $$(G.litName "distance") Nothing floatParser)
<*> (mkParameter <$> P.field $$(G.litName "from") Nothing geometryParser)
intersectsNbandGeomInput
:: forall m n. (MonadSchema n m, MonadError QErr m)
=> m (Parser 'Input n (STIntersectsNbandGeommin (UnpreparedValue 'Postgres)))
intersectsNbandGeomInput = do
geometryParser <- columnParser (ColumnScalar PGGeometry) (G.Nullability False)
integerParser <- columnParser (ColumnScalar PGInteger) (G.Nullability False)
pure $ P.object $$(G.litName "st_intersects_nband_geom_input") Nothing $
STIntersectsNbandGeommin <$> (mkParameter <$> P.field $$(G.litName "nband") Nothing integerParser)
<*> (mkParameter <$> P.field $$(G.litName "geommin") Nothing geometryParser)
intersectsGeomNbandInput
:: forall m n. (MonadSchema n m, MonadError QErr m)
=> m (Parser 'Input n (STIntersectsGeomminNband (UnpreparedValue 'Postgres)))
intersectsGeomNbandInput = do
geometryParser <- columnParser (ColumnScalar PGGeometry) (G.Nullability False)
integerParser <- columnParser (ColumnScalar PGInteger) (G.Nullability False)
pure $ P.object $$(G.litName "st_intersects_geom_nband_input") Nothing $ STIntersectsGeomminNband
<$> ( mkParameter <$> P.field $$(G.litName "geommin") Nothing geometryParser)
<*> (fmap mkParameter <$> P.fieldOptional $$(G.litName "nband") Nothing integerParser)
offsetParser :: MonadParse n => Parser 'Both n (SQLExpression 'Postgres)
offsetParser = PG.txtEncoder <$> Parser
{ pType = fakeBigIntSchemaType
, pParser = peelVariable (Just $ P.toGraphQLType fakeBigIntSchemaType) >=> \case
P.GraphQLValue (G.VInt i) -> PG.PGValBigInt <$> convertWith PG.scientificToInteger (fromInteger i)
P.JSONValue (J.Number n) -> PG.PGValBigInt <$> convertWith PG.scientificToInteger n
P.GraphQLValue (G.VString s) -> pure $ PG.PGValUnknown s
P.JSONValue (J.String s) -> pure $ PG.PGValUnknown s
v -> typeMismatch $$(G.litName "Int") "a 32-bit integer, or a 64-bit integer represented as a string" v
}
where
fakeBigIntSchemaType = P.NonNullable $ P.TNamed $ P.mkDefinition $$(G.litName "Int") Nothing P.TIScalar
convertWith f = either (parseErrorWith ParseFailed . qeError) pure . runAesonParser f
mkCountType :: Maybe Bool -> Maybe [Column 'Postgres] -> CountType 'Postgres
mkCountType _ Nothing = PG.CTStar
mkCountType (Just True) (Just cols) = PG.CTDistinct cols
mkCountType _ (Just cols) = PG.CTSimple cols
-- | Argument to distinct select on columns returned from table selection
-- > distinct_on: [table_select_column!]
tableDistinctOn
:: forall m n r. (MonadSchema n m, MonadTableInfo r m, MonadRole r m)
=> TableName 'Postgres
-> SelPermInfo 'Postgres
-> m (InputFieldsParser n (Maybe (XDistinct 'Postgres, NonEmpty (Column 'Postgres))))
tableDistinctOn table selectPermissions = do
columnsEnum <- tableSelectColumnsEnum table selectPermissions
pure $ do
maybeDistinctOnColumns <- join.join <$> for columnsEnum
(P.fieldOptional distinctOnName distinctOnDesc . P.nullable . P.list)
pure $ maybeDistinctOnColumns >>= NE.nonEmpty <&> ((),)
where
distinctOnName = $$(G.litName "distinct_on")
distinctOnDesc = Just $ G.Description "distinct select on columns"
-- | Various update operators
updateOperators
:: forall m n r. (MonadSchema n m, MonadTableInfo r m)
=> QualifiedTable -- ^ qualified name of the table
-> UpdPermInfo 'Postgres -- ^ update permissions of the table
-> m (Maybe (InputFieldsParser n [(Column 'Postgres, IR.UpdOpExpG (UnpreparedValue 'Postgres))]))
updateOperators table updatePermissions = do
tableGQLName <- getTableGQLName @'Postgres table
columns <- tableUpdateColumns table updatePermissions
let numericCols = onlyNumCols columns
jsonCols = onlyJSONBCols columns
parsers <- catMaybes <$> sequenceA
[ updateOperator tableGQLName $$(G.litName "_set")
typedParser IR.UpdSet columns
"sets the columns of the filtered rows to the given values"
(G.Description $ "input type for updating data in table " <>> table)
, updateOperator tableGQLName $$(G.litName "_inc")
typedParser IR.UpdInc numericCols
"increments the numeric columns with given value of the filtered values"
(G.Description $"input type for incrementing numeric columns in table " <>> table)
, let desc = "prepend existing jsonb value of filtered columns with new jsonb value"
in updateOperator tableGQLName $$(G.litName "_prepend")
typedParser IR.UpdPrepend jsonCols desc desc
, let desc = "append existing jsonb value of filtered columns with new jsonb value"
in updateOperator tableGQLName $$(G.litName "_append")
typedParser IR.UpdAppend jsonCols desc desc
, let desc = "delete key/value pair or string element. key/value pairs are matched based on their key value"
in updateOperator tableGQLName $$(G.litName "_delete_key")
nullableTextParser IR.UpdDeleteKey jsonCols desc desc
, let desc = "delete the array element with specified index (negative integers count from the end). "
<> "throws an error if top level container is not an array"
in updateOperator tableGQLName $$(G.litName "_delete_elem")
nonNullableIntParser IR.UpdDeleteElem jsonCols desc desc
, let desc = "delete the field or element with specified path (for JSON arrays, negative integers count from the end)"
in updateOperator tableGQLName $$(G.litName "_delete_at_path")
(fmap P.list . nonNullableTextParser) IR.UpdDeleteAtPath jsonCols desc desc
]
whenMaybe (not $ null parsers) do
let allowedOperators = fst <$> parsers
pure $ fmap catMaybes (sequenceA $ snd <$> parsers)
`P.bindFields` \opExps -> do
-- there needs to be at least one operator in the update, even if it is empty
let presetColumns = Map.toList $ IR.UpdSet . partialSQLExpToUnpreparedValue <$> upiSet updatePermissions
when (null opExps && null presetColumns) $ parseError $
"at least any one of " <> commaSeparated allowedOperators <> " is expected"
-- no column should appear twice
let flattenedExps = concat opExps
erroneousExps = OMap.filter ((>1) . length) $ OMap.groupTuples flattenedExps
unless (OMap.null erroneousExps) $ parseError $
"column found in multiple operators; " <>
T.intercalate ". " [ dquote columnName <> " in " <> commaSeparated (IR.updateOperatorText <$> ops)
| (columnName, ops) <- OMap.toList erroneousExps
]
pure $ presetColumns <> flattenedExps
where
typedParser columnInfo = fmap P.mkParameter <$> columnParser (pgiType columnInfo) (G.Nullability $ pgiIsNullable columnInfo)
nonNullableTextParser _ = fmap P.mkParameter <$> columnParser (ColumnScalar PGText) (G.Nullability False)
nullableTextParser _ = fmap P.mkParameter <$> columnParser (ColumnScalar PGText) (G.Nullability True)
nonNullableIntParser _ = fmap P.mkParameter <$> columnParser (ColumnScalar PGInteger) (G.Nullability False)
updateOperator
:: G.Name
-> G.Name
-> (ColumnInfo b -> m (Parser 'Both n a))
-> (a -> IR.UpdOpExpG (UnpreparedValue b))
-> [ColumnInfo b]
-> G.Description
-> G.Description
-> m (Maybe (Text, InputFieldsParser n (Maybe [(Column b, IR.UpdOpExpG (UnpreparedValue b))])))
updateOperator tableGQLName opName mkParser updOpExp columns opDesc objDesc =
whenMaybe (not $ null columns) do
fields <- for columns \columnInfo -> do
let fieldName = pgiName columnInfo
fieldDesc = pgiDescription columnInfo
fieldParser <- mkParser columnInfo
pure $ P.fieldOptional fieldName fieldDesc fieldParser
`mapField` \value -> (pgiColumn columnInfo, updOpExp value)
let objName = tableGQLName <> opName <> $$(G.litName "_input")
pure $ (G.unName opName,)
$ P.fieldOptional opName (Just opDesc)
$ P.object objName (Just objDesc)
$ catMaybes <$> sequenceA fields