graphql-engine/server/src-lib/Hasura/RQL/IR/Select.hs
Vamshi Surabhi e8e4f30dd6 server: support remote relationships on SQL Server and BigQuery (#1497)
Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST.

This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible).

The approach now changes to this:

1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed.

1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary.

1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response.

### Known issues

1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR.

1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR.

1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins.

1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST.

1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code.

### Notes to the reviewers

I think it is best reviewed commit by commit.

1. The first one is very straight forward.

1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality.  This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module.  Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore

1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor

1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server.

https://github.com/hasura/graphql-engine-mono/pull/1497

GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
2021-06-11 03:27:39 +00:00

542 lines
18 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# LANGUAGE UndecidableInstances #-}
module Hasura.RQL.IR.Select where
import Hasura.Prelude
import qualified Data.HashMap.Strict as HM
import qualified Data.List.NonEmpty as NE
import qualified Data.Sequence as Seq
import qualified Language.GraphQL.Draft.Syntax as G
import Control.Lens.TH (makeLenses, makePrisms)
import Data.Int (Int64)
import Hasura.GraphQL.Parser.Schema (InputValue)
import Hasura.RQL.IR.BoolExp
import Hasura.RQL.IR.OrderBy
import Hasura.RQL.Types.Backend
import Hasura.RQL.Types.Column
import Hasura.RQL.Types.Common
import Hasura.RQL.Types.Function
import Hasura.RQL.Types.Relationship
import Hasura.RQL.Types.RemoteRelationship
import Hasura.RQL.Types.RemoteSchema
import Hasura.SQL.Backend
data AnnAggregateOrderBy (b :: BackendType)
= AAOCount
| AAOOp !Text !(ColumnInfo b)
deriving (Generic)
deriving instance (Backend b) => Eq (AnnAggregateOrderBy b)
instance (Backend b) => Hashable (AnnAggregateOrderBy b)
data AnnOrderByElementG (b :: BackendType) v
= AOCColumn !(ColumnInfo b)
| AOCObjectRelation !(RelInfo b) !v !(AnnOrderByElementG b v)
| AOCArrayAggregation !(RelInfo b) !v !(AnnAggregateOrderBy b)
deriving (Generic, Functor)
deriving instance (Backend b, Eq v) => Eq (AnnOrderByElementG b v)
instance (Backend b, Hashable v) => Hashable (AnnOrderByElementG b v)
type AnnOrderByElement b v = AnnOrderByElementG b (AnnBoolExp b v)
traverseAnnOrderByElement
:: (Applicative f, Backend backend)
=> (a -> f b) -> AnnOrderByElement backend a -> f (AnnOrderByElement backend b)
traverseAnnOrderByElement f = \case
AOCColumn pgColInfo -> pure $ AOCColumn pgColInfo
AOCObjectRelation relInfo annBoolExp annObCol ->
AOCObjectRelation relInfo
<$> traverseAnnBoolExp f annBoolExp
<*> traverseAnnOrderByElement f annObCol
AOCArrayAggregation relInfo annBoolExp annAggOb ->
AOCArrayAggregation relInfo
<$> traverseAnnBoolExp f annBoolExp
<*> pure annAggOb
type AnnOrderByItemG b v = OrderByItemG b (AnnOrderByElement b v)
traverseAnnOrderByItem
:: (Applicative f, Backend backend)
=> (a -> f b) -> AnnOrderByItemG backend a -> f (AnnOrderByItemG backend b)
traverseAnnOrderByItem f =
traverse (traverseAnnOrderByElement f)
type AnnOrderByItem b = AnnOrderByItemG b (SQLExpression b)
type OrderByItemExp b =
OrderByItemG b (AnnOrderByElement b (SQLExpression b), (Alias b, SQLExpression b))
data AnnRelationSelectG (b :: BackendType) a
= AnnRelationSelectG
{ aarRelationshipName :: !RelName -- Relationship name
, aarColumnMapping :: !(HashMap (Column b) (Column b)) -- Column of left table to join with
, aarAnnSelect :: !a -- Current table. Almost ~ to SQL Select
} deriving (Functor, Foldable, Traversable)
type ArrayRelationSelectG b v = AnnRelationSelectG b (AnnSimpleSelG b v)
type ArrayAggregateSelectG b v = AnnRelationSelectG b (AnnAggregateSelectG b v)
type ArrayConnectionSelect b v = AnnRelationSelectG b (ConnectionSelect b v)
type ArrayAggregateSelect b = ArrayAggregateSelectG b (SQLExpression b)
data AnnObjectSelectG (b :: BackendType) v
= AnnObjectSelectG
{ _aosFields :: !(AnnFieldsG b v)
, _aosTableFrom :: !(TableName b)
, _aosTableFilter :: !(AnnBoolExp b v)
}
type AnnObjectSelect b = AnnObjectSelectG b (SQLExpression b)
traverseAnnObjectSelect
:: (Applicative f, Backend backend)
=> (a -> f b)
-> AnnObjectSelectG backend a -> f (AnnObjectSelectG backend b)
traverseAnnObjectSelect f (AnnObjectSelectG fields fromTable permissionFilter) =
AnnObjectSelectG
<$> traverseAnnFields f fields
<*> pure fromTable
<*> traverseAnnBoolExp f permissionFilter
type ObjectRelationSelectG b v = AnnRelationSelectG b (AnnObjectSelectG b v)
type ObjectRelationSelect b = ObjectRelationSelectG b (SQLExpression b)
data ComputedFieldScalarSelect (b :: BackendType) v
= ComputedFieldScalarSelect
{ _cfssFunction :: !(FunctionName b)
, _cfssArguments :: !(FunctionArgsExpTableRow b v)
, _cfssType :: !(ScalarType b)
, _cfssColumnOp :: !(Maybe (ColumnOp b))
} deriving (Functor, Foldable, Traversable)
deriving instance (Backend b, Show v) => Show (ComputedFieldScalarSelect b v)
deriving instance (Backend b, Eq v) => Eq (ComputedFieldScalarSelect b v)
data ComputedFieldSelect (b :: BackendType) v
= CFSScalar
!(ComputedFieldScalarSelect b v)
-- ^ Type containing info about the computed field
!(Maybe (AnnColumnCaseBoolExp b v))
-- ^ This type is used to determine if whether the scalar
-- computed field should be nullified. When the value is `Nothing`,
-- the scalar computed value will be outputted as computed and when the
-- value is `Just c`, the scalar computed field will be outputted when
-- `c` evaluates to `true` and `null` when `c` evaluates to `false`
| CFSTable !JsonAggSelect !(AnnSimpleSelG b v)
traverseComputedFieldSelect
:: (Applicative f, Backend backend)
=> (v -> f w)
-> ComputedFieldSelect backend v -> f (ComputedFieldSelect backend w)
traverseComputedFieldSelect fv = \case
CFSScalar scalarSel caseBoolExpMaybe ->
CFSScalar <$> traverse fv scalarSel <*> traverse (traverseAnnColumnCaseBoolExp fv) caseBoolExpMaybe
CFSTable b tableSel -> CFSTable b <$> traverseAnnSimpleSelect fv tableSel
type Fields a = [(FieldName, a)]
data ArraySelectG (b :: BackendType) v
= ASSimple !(ArrayRelationSelectG b v)
| ASAggregate !(ArrayAggregateSelectG b v)
| ASConnection !(ArrayConnectionSelect b v)
traverseArraySelect
:: (Applicative f, Backend backend)
=> (a -> f b)
-> ArraySelectG backend a
-> f (ArraySelectG backend b)
traverseArraySelect f = \case
ASSimple arrRel ->
ASSimple <$> traverse (traverseAnnSimpleSelect f) arrRel
ASAggregate arrRelAgg ->
ASAggregate <$> traverse (traverseAnnAggregateSelect f) arrRelAgg
ASConnection relConnection ->
ASConnection <$> traverse (traverseConnectionSelect f) relConnection
type ArraySelect b = ArraySelectG b (SQLExpression b)
type ArraySelectFieldsG b v = Fields (ArraySelectG b v)
data ColumnOp (b :: BackendType)
= ColumnOp
{ _colOp :: SQLOperator b
, _colExp :: SQLExpression b
}
deriving instance Backend b => Show (ColumnOp b)
deriving instance Backend b => Eq (ColumnOp b)
type ColumnBoolExpression b = Either (AnnBoolExpPartialSQL b) (AnnBoolExpSQL b)
data AnnColumnField (b :: BackendType) v
= AnnColumnField
{ _acfInfo :: !(ColumnInfo b)
, _acfAsText :: !Bool
-- ^ If this field is 'True', columns are explicitly casted to @text@ when fetched, which avoids
-- an issue that occurs because we dont currently have proper support for array types. See
-- https://github.com/hasura/graphql-engine/pull/3198 for more details.
, _acfOp :: !(Maybe (ColumnOp b))
, _acfCaseBoolExpression :: !(Maybe (AnnColumnCaseBoolExp b v))
-- ^ This type is used to determine if whether the column
-- should be nullified. When the value is `Nothing`, the column value
-- will be outputted as computed and when the value is `Just c`, the
-- column will be outputted when `c` evaluates to `true` and `null`
-- when `c` evaluates to `false`.
}
traverseAnnColumnField
:: (Applicative f, Backend backend)
=> (a -> f b)
-> AnnColumnField backend a
-> f (AnnColumnField backend b)
traverseAnnColumnField f (AnnColumnField info asText op caseBoolExpMaybe) =
AnnColumnField info asText op
<$> traverse (traverseAnnColumnCaseBoolExp f) caseBoolExpMaybe
data RemoteFieldArgument
= RemoteFieldArgument
{ _rfaArgument :: !G.Name
, _rfaValue :: !(InputValue RemoteSchemaVariable)
} deriving (Eq,Show)
data RemoteSelect (b :: BackendType)
= RemoteSelect
{ _rselArgs :: ![RemoteFieldArgument]
, _rselSelection :: !(G.SelectionSet G.NoFragments RemoteSchemaVariable)
, _rselHasuraColumns :: !(HashSet (ColumnInfo b))
, _rselFieldCall :: !(NonEmpty FieldCall)
, _rselRemoteSchema :: !RemoteSchemaInfo
}
data AnnFieldG (b :: BackendType) v
= AFColumn !(AnnColumnField b v)
| AFObjectRelation !(ObjectRelationSelectG b v)
| AFArrayRelation !(ArraySelectG b v)
| AFComputedField !(XComputedField b) !(ComputedFieldSelect b v)
| AFRemote !(RemoteSelect b)
| AFNodeId !(XRelay b) !(TableName b) !(PrimaryKeyColumns b)
| AFExpression !Text
mkAnnColumnField
:: ColumnInfo backend
-> Maybe (AnnColumnCaseBoolExp backend v)
-> Maybe (ColumnOp backend)
-> AnnFieldG backend v
mkAnnColumnField ci caseBoolExp colOpM =
AFColumn (AnnColumnField ci False colOpM caseBoolExp)
mkAnnColumnFieldAsText
:: ColumnInfo backend
-> AnnFieldG backend v
mkAnnColumnFieldAsText ci =
AFColumn (AnnColumnField ci True Nothing Nothing)
traverseAnnField
:: (Applicative f, Backend backend)
=> (a -> f b) -> AnnFieldG backend a -> f (AnnFieldG backend b)
traverseAnnField f = \case
AFColumn colFld -> AFColumn <$> traverseAnnColumnField f colFld
AFObjectRelation sel -> AFObjectRelation <$> traverse (traverseAnnObjectSelect f) sel
AFArrayRelation sel -> AFArrayRelation <$> traverseArraySelect f sel
AFComputedField x sel -> AFComputedField x <$> traverseComputedFieldSelect f sel
AFRemote s -> pure $ AFRemote s
AFNodeId x qt pKeys -> pure $ AFNodeId x qt pKeys
AFExpression t -> pure $ AFExpression t
type AnnField b = AnnFieldG b (SQLExpression b)
data SelectArgsG (b :: BackendType) v
= SelectArgs
{ _saWhere :: !(Maybe (AnnBoolExp b v))
, _saOrderBy :: !(Maybe (NE.NonEmpty (AnnOrderByItemG b v)))
, _saLimit :: !(Maybe Int)
, _saOffset :: !(Maybe Int64)
, _saDistinct :: !(Maybe (XDistinct b, NE.NonEmpty (Column b)))
} deriving (Generic)
deriving instance
( Backend b
, Eq (BooleanOperators b v)
, Eq v
) => Eq (SelectArgsG b v)
instance
( Backend b
, Hashable (BooleanOperators b v)
, Hashable v
) => Hashable (SelectArgsG b v)
traverseSelectArgs
:: (Applicative f, Backend backend)
=> (a -> f b) -> SelectArgsG backend a -> f (SelectArgsG backend b)
traverseSelectArgs f (SelectArgs wh ordBy lmt ofst distCols) =
SelectArgs
<$> traverse (traverseAnnBoolExp f) wh
-- traversing through maybe -> nonempty -> annorderbyitem
<*> traverse (traverse (traverseAnnOrderByItem f)) ordBy
<*> pure lmt
<*> pure ofst
<*> pure distCols
type SelectArgs b = SelectArgsG b (SQLExpression b)
noSelectArgs :: SelectArgsG backend v
noSelectArgs = SelectArgs Nothing Nothing Nothing Nothing Nothing
data ColFld (b :: BackendType)
= CFCol !(Column b) !(ColumnType b)
| CFExp !Text
type ColumnFields b = Fields (ColFld b)
data AggregateOp (b :: BackendType)
= AggregateOp
{ _aoOp :: !Text
, _aoFields :: !(ColumnFields b)
}
data AggregateField (b :: BackendType)
= AFCount !(CountType b)
| AFOp !(AggregateOp b)
| AFExp !Text
type AggregateFields b = Fields (AggregateField b)
type AnnFieldsG b v = Fields (AnnFieldG b v)
traverseAnnFields
:: (Applicative f, Backend backend)
=> (a -> f b) -> AnnFieldsG backend a -> f (AnnFieldsG backend b)
traverseAnnFields f = traverse (traverse (traverseAnnField f))
type AnnFields b = AnnFieldsG b (SQLExpression b)
data TableAggregateFieldG (b :: BackendType) v
= TAFAgg !(AggregateFields b)
| TAFNodes (XNodesAgg b) !(AnnFieldsG b v)
| TAFExp !Text
data PageInfoField
= PageInfoTypename !Text
| PageInfoHasNextPage
| PageInfoHasPreviousPage
| PageInfoStartCursor
| PageInfoEndCursor
deriving (Show, Eq)
type PageInfoFields = Fields PageInfoField
data EdgeField (b :: BackendType) v
= EdgeTypename !Text
| EdgeCursor
| EdgeNode !(AnnFieldsG b v)
type EdgeFields b v = Fields (EdgeField b v)
traverseEdgeField
:: (Applicative f, Backend backend)
=> (a -> f b) -> EdgeField backend a -> f (EdgeField backend b)
traverseEdgeField f = \case
EdgeTypename t -> pure $ EdgeTypename t
EdgeCursor -> pure EdgeCursor
EdgeNode fields -> EdgeNode <$> traverseAnnFields f fields
data ConnectionField (b :: BackendType) v
= ConnectionTypename !Text
| ConnectionPageInfo !PageInfoFields
| ConnectionEdges !(EdgeFields b v)
type ConnectionFields b v = Fields (ConnectionField b v)
traverseConnectionField
:: (Applicative f, Backend backend)
=> (a -> f b) -> ConnectionField backend a -> f (ConnectionField backend b)
traverseConnectionField f = \case
ConnectionTypename t -> pure $ ConnectionTypename t
ConnectionPageInfo fields -> pure $ ConnectionPageInfo fields
ConnectionEdges fields ->
ConnectionEdges <$> traverse (traverse (traverseEdgeField f)) fields
traverseTableAggregateField
:: (Applicative f, Backend backend)
=> (a -> f b) -> TableAggregateFieldG backend a -> f (TableAggregateFieldG backend b)
traverseTableAggregateField f = \case
TAFAgg aggFlds -> pure $ TAFAgg aggFlds
TAFNodes x annFlds -> TAFNodes x <$> traverseAnnFields f annFlds
TAFExp t -> pure $ TAFExp t
type TableAggregateField b = TableAggregateFieldG b (SQLExpression b)
type TableAggregateFieldsG b v = Fields (TableAggregateFieldG b v)
type TableAggregateFields b = TableAggregateFieldsG b (SQLExpression b)
data ArgumentExp (b :: BackendType) a
= AETableRow !(Maybe (Identifier b)) -- ^ table row accessor
| AESession !a -- ^ JSON/JSONB hasura session variable object
| AEInput !a
deriving (Functor, Foldable, Traversable, Generic)
deriving instance (Backend b, Show a) => Show (ArgumentExp b a)
deriving instance (Backend b, Eq a) => Eq (ArgumentExp b a)
instance (Backend b, Hashable v) => Hashable (ArgumentExp b v)
type FunctionArgsExpTableRow b v = FunctionArgsExpG (ArgumentExp b v)
data SelectFromG (b :: BackendType) v
= FromTable !(TableName b)
| FromIdentifier !(Identifier b)
| FromFunction !(FunctionName b)
!(FunctionArgsExpTableRow b v)
-- a definition list
!(Maybe [(Column b, ScalarType b)])
deriving (Functor, Foldable, Traversable, Generic)
instance (Backend b, Hashable v) => Hashable (SelectFromG b v)
type SelectFrom b = SelectFromG b (SQLExpression b)
data TablePermG (b :: BackendType) v
= TablePerm
{ _tpFilter :: !(AnnBoolExp b v)
, _tpLimit :: !(Maybe Int)
} deriving (Generic)
instance
( Backend b
, Hashable (BooleanOperators b v)
, Hashable (ColumnInfo b)
, Hashable v
) => Hashable (TablePermG b v)
traverseTablePerm
:: (Applicative f, Backend backend)
=> (a -> f b)
-> TablePermG backend a
-> f (TablePermG backend b)
traverseTablePerm f (TablePerm boolExp limit) =
TablePerm
<$> traverseAnnBoolExp f boolExp
<*> pure limit
noTablePermissions :: TablePermG backend v
noTablePermissions =
TablePerm annBoolExpTrue Nothing
type TablePerm b = TablePermG b (SQLExpression b)
data AnnSelectG (b :: BackendType) a v
= AnnSelectG
{ _asnFields :: !a
, _asnFrom :: !(SelectFromG b v)
, _asnPerm :: !(TablePermG b v)
, _asnArgs :: !(SelectArgsG b v)
, _asnStrfyNum :: !Bool
}
traverseAnnSimpleSelect
:: (Applicative f, Backend backend)
=> (a -> f b)
-> AnnSimpleSelG backend a -> f (AnnSimpleSelG backend b)
traverseAnnSimpleSelect f = traverseAnnSelect (traverseAnnFields f) f
traverseAnnAggregateSelect
:: (Applicative f, Backend backend)
=> (a -> f b)
-> AnnAggregateSelectG backend a -> f (AnnAggregateSelectG backend b)
traverseAnnAggregateSelect f =
traverseAnnSelect (traverse (traverse (traverseTableAggregateField f))) f
traverseAnnSelect
:: (Applicative f, Backend backend)
=> (a -> f b) -> (v -> f w)
-> AnnSelectG backend a v -> f (AnnSelectG backend b w)
traverseAnnSelect f1 f2 (AnnSelectG flds tabFrom perm args strfyNum) =
AnnSelectG
<$> f1 flds
<*> traverse f2 tabFrom
<*> traverseTablePerm f2 perm
<*> traverseSelectArgs f2 args
<*> pure strfyNum
type AnnSimpleSelG b v = AnnSelectG b (AnnFieldsG b v) v
type AnnSimpleSel b = AnnSimpleSelG b (SQLExpression b)
type AnnAggregateSelectG b v = AnnSelectG b (TableAggregateFieldsG b v) v
type AnnAggregateSelect b = AnnAggregateSelectG b (SQLExpression b)
data ConnectionSlice
= SliceFirst !Int
| SliceLast !Int
deriving (Show, Eq, Generic)
instance Hashable ConnectionSlice
data ConnectionSplitKind
= CSKBefore
| CSKAfter
deriving (Show, Eq, Generic)
instance Hashable ConnectionSplitKind
data ConnectionSplit (b :: BackendType) v
= ConnectionSplit
{ _csKind :: !ConnectionSplitKind
, _csValue :: !v
, _csOrderBy :: !(OrderByItemG b (AnnOrderByElementG b ()))
} deriving (Functor, Generic, Foldable, Traversable)
instance (Backend b, Hashable (ColumnInfo b), Hashable v) => Hashable (ConnectionSplit b v)
traverseConnectionSplit
:: (Applicative f)
=> (a -> f b) -> ConnectionSplit backend a -> f (ConnectionSplit backend b)
traverseConnectionSplit f (ConnectionSplit k v ob) =
ConnectionSplit k <$> f v <*> pure ob
data ConnectionSelect (b :: BackendType) v
= ConnectionSelect
{ _csXRelay :: !(XRelay b)
, _csPrimaryKeyColumns :: !(PrimaryKeyColumns b)
, _csSplit :: !(Maybe (NE.NonEmpty (ConnectionSplit b v)))
, _csSlice :: !(Maybe ConnectionSlice)
, _csSelect :: !(AnnSelectG b (ConnectionFields b v) v)
}
traverseConnectionSelect
:: (Applicative f, Backend backend)
=> (a -> f b)
-> ConnectionSelect backend a -> f (ConnectionSelect backend b)
traverseConnectionSelect f (ConnectionSelect x pkCols cSplit cSlice sel) =
ConnectionSelect x pkCols
<$> traverse (traverse (traverseConnectionSplit f)) cSplit
<*> pure cSlice
<*> traverseAnnSelect (traverse (traverse (traverseConnectionField f))) f sel
data FunctionArgsExpG a
= FunctionArgsExp
{ _faePositional :: ![a]
, _faeNamed :: !(HM.HashMap Text a)
} deriving (Show, Eq, Functor, Foldable, Traversable, Generic)
instance (Hashable a) => Hashable (FunctionArgsExpG a)
emptyFunctionArgsExp :: FunctionArgsExpG a
emptyFunctionArgsExp = FunctionArgsExp [] HM.empty
type FunctionArgExp b = FunctionArgsExpG (SQLExpression b)
-- | If argument positional index is less than or equal to length of
-- 'positional' arguments then insert the value in 'positional' arguments else
-- insert the value with argument name in 'named' arguments
insertFunctionArg
:: FunctionArgName
-> Int
-> a
-> FunctionArgsExpG a
-> FunctionArgsExpG a
insertFunctionArg argName idx value (FunctionArgsExp positional named) =
if (idx + 1) <= length positional then
FunctionArgsExp (insertAt idx value positional) named
else FunctionArgsExp positional $
HM.insert (getFuncArgNameTxt argName) value named
where
insertAt i a = toList . Seq.insertAt i a . Seq.fromList
$(makeLenses ''AnnSelectG)
$(makePrisms ''AnnFieldG)
$(makePrisms ''AnnOrderByElementG)