mirror of
https://github.com/hcengineering/platform.git
synced 2025-01-05 10:29:51 +03:00
ba8ab45dc2
Signed-off-by: Andrey Sobolev <haiodo@gmail.com>
70 lines
3.1 KiB
Python
70 lines
3.1 KiB
Python
from transformers import AutoTokenizer, AutoModel
|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Model
|
|
import torch
|
|
import time
|
|
# from ratelimiter import RateLimiter
|
|
|
|
class EmbeddingService(object):
|
|
cos = torch.nn.CosineSimilarity(dim=0)
|
|
model: GPT2Model
|
|
tokenizer: GPT2Tokenizer
|
|
def __init__(self, modelId, device='cpu'):
|
|
#Load AutoModel from huggingface model repository
|
|
|
|
# mps for macos is also seems supported, but it not work with GPT2 based models, with predictions.
|
|
self.device = torch.device(device)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(modelId, use_fast=True) # AutoTokenizer.from_pretrained(modelId)
|
|
self.model = AutoModel.from_pretrained(modelId).to(self.device)# AutoModel.from_pretrained(modelId).to(self.device)
|
|
# self.hmodel = GPT2LMHeadModel.from_pretrained(modelId).to(self.device)# AutoModel.from_pretrained(modelId).to(self.device)
|
|
# self.model.parallelize()
|
|
|
|
print('using', torch.get_num_threads())
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging
|
|
def mean_pooling(self, model_output, attention_mask):
|
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
return sum_embeddings / sum_mask
|
|
|
|
# @RateLimiter(max_calls=10)
|
|
def embeddings(self, sentences):
|
|
#Tokenize sentences
|
|
st = time.time()
|
|
encoded_input = self.tokenizer(sentences, truncation=True, return_tensors='pt').to(self.device)
|
|
|
|
print('token', len(sentences), len(encoded_input), len(encoded_input[0]))
|
|
|
|
try:
|
|
mi = self.model.wpe.num_embeddings
|
|
if len(encoded_input[0]) > mi:
|
|
raise Exception("This model's maximum context length is " + str(mi) + " tokens, however you requested " + str(len(encoded_input[0])) + " tokens")
|
|
except:
|
|
pass
|
|
try:
|
|
mi = self.model.embeddings.position_embeddings.num_embeddings
|
|
if len(encoded_input[0]) > mi:
|
|
raise Exception("This model's maximum context length is " + str(mi) + " tokens, however you requested " + str(len(encoded_input[0])) + " tokens")
|
|
except:
|
|
pass
|
|
#Compute token embeddings
|
|
with torch.no_grad():
|
|
model_output = self.model(**encoded_input)
|
|
|
|
#Perform pooling. In this case, mean pooling
|
|
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
|
|
ed = time.time()
|
|
|
|
print('token', len(sentences), len(encoded_input), len(encoded_input[0]), ' time', (ed-st))
|
|
|
|
return [sentence_embeddings[0], len(encoded_input[0])]
|
|
|
|
def completion(self, text, do_sample=True, temperature=1.3, max_length=2048, **kwargs):
|
|
input_ids = self.tokenizer.encode(text, return_tensors="pt").to(self.device)
|
|
out = self.model.generate(input_ids, do_sample=do_sample, temperature=temperature, max_length=max_length, **kwargs)
|
|
|
|
return list(map(self.tokenizer.decode, out))[0]
|
|
|
|
def compare(self, e1, e2):
|
|
return self.cos(e1, e2) |